==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-DEC-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 30-SEP-11 2LK0 . COMPND 2 MOLECULE: RNA-BINDING PROTEIN 5; . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.FARINA,M.PELLECCHIA . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2829.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 190 0, 0.0 2,-1.5 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 95.9 2.1 0.0 -1.3 2 2 A F - 0 0 193 1,-0.2 14,-0.2 14,-0.0 0, 0.0 -0.358 360.0 -56.9 -86.5 60.0 2.4 -3.5 -2.7 3 3 A E S S+ 0 0 102 -2,-1.5 13,-2.1 1,-0.2 14,-0.3 0.990 107.9 111.3 70.6 61.2 5.4 -2.7 -4.9 4 4 A D E -A 15 0A 26 11,-0.3 2,-0.3 12,-0.2 11,-0.2 -0.905 47.5-147.3-151.3 177.4 4.0 0.2 -6.9 5 5 A W E -A 14 0A 21 9,-2.5 9,-2.2 -2,-0.3 2,-0.4 -0.942 14.8-122.7-148.5 168.4 4.3 4.0 -7.4 6 6 A L E -A 13 0A 109 -2,-0.3 7,-0.2 7,-0.2 6,-0.1 -0.943 30.5-112.6-119.7 134.5 2.1 7.0 -8.3 7 7 A C > - 0 0 0 5,-3.0 4,-0.6 -2,-0.4 21,-0.1 -0.336 14.5-139.0 -65.6 147.8 2.7 9.4 -11.2 8 8 A N T 4 S+ 0 0 74 19,-0.3 -1,-0.1 2,-0.1 19,-0.1 0.105 97.7 38.5 -90.9 23.2 3.7 13.0 -10.3 9 9 A K T 4 S+ 0 0 145 3,-0.1 -1,-0.1 17,-0.1 19,-0.0 0.554 129.9 18.0-134.1 -62.1 1.5 14.4 -13.1 10 10 A C T 4 S- 0 0 21 2,-0.1 -2,-0.1 3,-0.0 3,-0.1 0.455 92.3-128.0 -95.5 -1.0 -1.8 12.5 -13.4 11 11 A C < + 0 0 97 -4,-0.6 2,-0.2 1,-0.2 -3,-0.1 0.677 55.3 153.2 68.1 15.4 -1.6 10.8 -10.0 12 12 A L - 0 0 59 -6,-0.1 -5,-3.0 1,-0.1 -1,-0.2 -0.598 42.8-122.6 -84.2 141.5 -2.1 7.4 -11.6 13 13 A N E -A 6 0A 99 -7,-0.2 2,-0.3 -2,-0.2 -7,-0.2 -0.369 32.4-179.1 -75.5 160.5 -0.8 4.3 -9.9 14 14 A N E -A 5 0A 21 -9,-2.2 -9,-2.5 -2,-0.1 7,-0.1 -0.983 32.2 -89.2-161.3 153.5 1.6 1.9 -11.6 15 15 A F E > -A 4 0A 125 -2,-0.3 3,-1.0 -11,-0.2 -11,-0.3 -0.216 32.3-125.8 -62.3 148.8 3.6 -1.3 -11.1 16 16 A R T 3 S+ 0 0 139 -13,-2.1 -12,-0.2 1,-0.3 -1,-0.1 0.844 113.0 58.6 -62.6 -31.7 7.1 -1.0 -9.6 17 17 A K T 3 S+ 0 0 187 -14,-0.3 -1,-0.3 2,-0.0 -13,-0.1 0.763 89.2 100.1 -65.2 -24.5 8.3 -3.0 -12.6 18 18 A R < - 0 0 104 -3,-1.0 3,-0.1 1,-0.1 -4,-0.1 -0.017 61.0-154.8 -57.8 170.8 7.0 -0.3 -14.8 19 19 A L + 0 0 105 1,-0.4 9,-0.6 8,-0.0 2,-0.3 0.688 68.3 0.9-116.0 -37.8 9.2 2.4 -16.3 20 20 A K B S-B 27 0B 101 7,-0.2 -1,-0.4 8,-0.1 7,-0.3 -0.970 88.9 -74.2-154.4 162.0 6.9 5.4 -17.0 21 21 A C > - 0 0 0 5,-3.1 4,-1.1 -2,-0.3 -7,-0.1 -0.398 32.1-157.8 -64.0 127.1 3.4 6.4 -16.6 22 22 A F T 4 S+ 0 0 159 -2,-0.2 -1,-0.2 2,-0.1 5,-0.1 0.611 88.1 55.2 -79.2 -11.0 1.3 4.6 -19.3 23 23 A R T 4 S+ 0 0 163 3,-0.1 -1,-0.1 -11,-0.1 -2,-0.0 0.963 126.7 12.2 -85.2 -64.5 -1.4 7.3 -19.0 24 24 A C T 4 S- 0 0 61 2,-0.2 -2,-0.1 -12,-0.0 3,-0.1 0.681 97.0-127.6 -86.5 -17.3 0.4 10.6 -19.6 25 25 A G < + 0 0 42 -4,-1.1 -3,-0.1 1,-0.3 2,-0.1 0.215 66.1 129.6 93.6 -17.5 3.5 8.8 -20.9 26 26 A A - 0 0 34 -6,-0.1 -5,-3.1 1,-0.1 -1,-0.3 -0.383 62.4-107.0 -78.8 154.7 5.8 10.8 -18.4 27 27 A D B > -B 20 0B 59 3,-0.8 3,-2.4 -7,-0.3 -19,-0.3 -0.445 20.6-119.7 -78.2 153.2 8.3 9.0 -16.2 28 28 A K T 3 S+ 0 0 72 -9,-0.6 -1,-0.1 1,-0.3 -8,-0.1 0.735 120.7 46.3 -59.6 -20.8 7.7 8.6 -12.5 29 29 A F T 3 0 0 180 1,-0.3 -1,-0.3 -22,-0.0 -2,-0.1 0.034 360.0 360.0-106.8 24.9 11.0 10.6 -12.2 30 30 A D < 0 0 141 -3,-2.4 -3,-0.8 0, 0.0 -1,-0.3 -0.407 360.0 360.0 58.0 360.0 10.0 13.3 -14.7