==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-NOV-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN TRANSPORT 01-JAN-12 2LNM . COMPND 2 MOLECULE: PROTEIN TIC 40, CHLOROPLASTIC; . SOURCE 2 ORGANISM_SCIENTIFIC: ARABIDOPSIS THALIANA; . AUTHOR C.CHEN,Y.KAO . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4812.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 48 77.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 14 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P > 0 0 127 0, 0.0 4,-2.3 0, 0.0 5,-0.3 0.000 360.0 360.0 360.0 26.6 -13.1 -4.2 2.0 2 2 A E H > + 0 0 161 1,-0.2 4,-1.2 2,-0.2 5,-0.1 0.816 360.0 66.3 -59.2 -25.7 -14.5 -2.1 4.9 3 3 A E H > S+ 0 0 177 2,-0.2 4,-0.8 1,-0.2 3,-0.3 0.986 110.1 30.1 -61.5 -58.9 -12.8 -4.7 7.2 4 4 A V H >> S+ 0 0 75 1,-0.2 4,-1.6 2,-0.2 3,-1.4 0.950 114.5 60.8 -68.7 -45.9 -9.2 -4.0 6.2 5 5 A I H 3X S+ 0 0 81 -4,-2.3 4,-0.8 1,-0.3 -1,-0.2 0.827 99.3 60.8 -51.5 -27.1 -9.8 -0.3 5.5 6 6 A S H 3< S+ 0 0 82 -4,-1.2 3,-0.4 -3,-0.3 -1,-0.3 0.894 103.2 48.2 -68.7 -37.3 -10.9 -0.1 9.1 7 7 A K H X< S+ 0 0 53 -3,-1.4 3,-2.1 -4,-0.8 4,-0.3 0.834 99.2 67.0 -73.4 -30.1 -7.4 -1.2 10.3 8 8 A I H >< S+ 0 0 13 -4,-1.6 3,-1.7 1,-0.3 7,-0.5 0.849 83.6 74.8 -59.8 -29.6 -5.6 1.4 8.0 9 9 A M T 3< S+ 0 0 140 -4,-0.8 -1,-0.3 -3,-0.4 -2,-0.2 0.631 78.5 78.5 -59.3 -7.0 -7.2 4.1 10.2 10 10 A E T < S+ 0 0 88 -3,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.907 99.7 36.4 -69.5 -39.1 -4.5 3.0 12.7 11 11 A N S X> S- 0 0 48 -3,-1.7 3,-2.1 -4,-0.3 4,-1.8 -0.802 70.7-163.2-116.1 89.7 -1.8 5.0 10.8 12 12 A P H 3> S+ 0 0 99 0, 0.0 4,-1.6 0, 0.0 5,-0.2 0.696 89.3 70.0 -45.2 -15.3 -3.3 8.2 9.4 13 13 A D H 3> S+ 0 0 91 2,-0.2 4,-1.8 3,-0.2 5,-0.1 0.929 104.5 35.4 -71.8 -44.1 -0.2 8.2 7.2 14 14 A V H <> S+ 0 0 4 -3,-2.1 4,-3.4 -6,-0.2 5,-0.2 0.895 115.8 55.2 -77.2 -38.6 -1.4 5.2 5.2 15 15 A A H < S+ 0 0 24 -4,-1.8 4,-0.3 -7,-0.5 -2,-0.2 0.904 113.1 43.1 -60.9 -36.9 -5.0 6.3 5.3 16 16 A M H >< S+ 0 0 130 -4,-1.6 3,-1.1 -5,-0.3 -1,-0.2 0.885 114.5 49.6 -75.6 -36.9 -3.9 9.6 3.8 17 17 A A H >< S+ 0 0 9 -4,-1.8 3,-1.9 1,-0.3 7,-0.3 0.872 96.5 70.2 -69.4 -32.8 -1.6 7.8 1.4 18 18 A F T 3< S+ 0 0 48 -4,-3.4 -1,-0.3 1,-0.3 -2,-0.2 0.778 88.8 66.4 -55.2 -20.9 -4.6 5.6 0.4 19 19 A Q T < S+ 0 0 149 -3,-1.1 -1,-0.3 -4,-0.3 -2,-0.1 0.117 84.8 97.6 -88.4 25.2 -5.9 8.8 -1.1 20 20 A N S <> S- 0 0 50 -3,-1.9 4,-2.3 1,-0.1 5,-0.2 -0.876 71.8-138.8-113.0 145.9 -3.1 8.7 -3.7 21 21 A P H > S+ 0 0 95 0, 0.0 4,-2.8 0, 0.0 5,-0.3 0.931 103.3 52.0 -70.0 -45.5 -3.4 7.3 -7.3 22 22 A R H > S+ 0 0 113 2,-0.2 4,-1.7 1,-0.2 5,-0.1 0.872 113.7 47.0 -60.5 -32.7 -0.1 5.5 -7.4 23 23 A V H > S+ 0 0 0 -6,-0.2 4,-3.0 2,-0.2 5,-0.3 0.969 112.5 45.8 -74.3 -52.7 -1.0 3.8 -4.1 24 24 A Q H X S+ 0 0 92 -4,-2.3 4,-2.9 -7,-0.3 5,-0.3 0.897 116.3 49.0 -57.4 -34.7 -4.6 2.8 -5.1 25 25 A A H X S+ 0 0 31 -4,-2.8 4,-2.4 -5,-0.2 -1,-0.3 0.875 109.5 51.5 -72.7 -34.6 -3.0 1.6 -8.4 26 26 A A H X S+ 0 0 1 -4,-1.7 4,-2.0 -5,-0.3 -2,-0.2 0.930 115.9 40.7 -68.3 -41.9 -0.3 -0.3 -6.4 27 27 A L H X S+ 0 0 54 -4,-3.0 4,-0.9 2,-0.2 -2,-0.2 0.953 116.5 48.1 -71.7 -47.9 -3.0 -2.0 -4.3 28 28 A M H >< S+ 0 0 123 -4,-2.9 3,-0.7 -5,-0.3 4,-0.3 0.932 117.8 43.0 -59.3 -40.4 -5.4 -2.6 -7.2 29 29 A E H >X S+ 0 0 70 -4,-2.4 3,-2.4 -5,-0.3 4,-0.8 0.852 97.6 74.4 -74.0 -30.8 -2.4 -4.0 -9.1 30 30 A C H 3< S+ 0 0 48 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.833 81.2 75.2 -51.1 -25.9 -1.2 -5.9 -6.0 31 31 A S T << S+ 0 0 93 -4,-0.9 -1,-0.3 -3,-0.7 -2,-0.2 0.904 89.0 56.7 -54.2 -39.2 -4.2 -8.2 -7.0 32 32 A E T <4 S- 0 0 128 -3,-2.4 -1,-0.2 -4,-0.3 -2,-0.2 0.986 128.6 -67.3 -57.5 -56.8 -2.0 -9.5 -9.8 33 33 A N >< - 0 0 71 -4,-0.8 3,-2.6 1,-0.0 4,-0.2 -0.824 46.6 -84.2 170.8 151.3 0.7 -10.6 -7.4 34 34 A P G > S+ 0 0 104 0, 0.0 3,-0.7 0, 0.0 4,-0.3 0.600 114.0 83.0 -45.8 -7.9 3.4 -9.1 -5.0 35 35 A M G > + 0 0 111 1,-0.2 3,-0.5 2,-0.2 4,-0.1 0.596 69.4 79.6 -76.7 -7.7 5.5 -8.8 -8.2 36 36 A N G X> S+ 0 0 9 -3,-2.6 3,-2.7 1,-0.2 4,-1.2 0.869 78.8 66.6 -68.3 -33.9 3.7 -5.5 -9.0 37 37 A I H <> S+ 0 0 43 -3,-0.7 4,-0.9 1,-0.3 -1,-0.2 0.869 85.6 71.4 -56.4 -32.0 5.9 -3.6 -6.6 38 38 A M H <4 S+ 0 0 113 -3,-0.5 -1,-0.3 -4,-0.3 -2,-0.2 0.659 102.2 46.5 -59.5 -9.2 8.8 -4.4 -8.9 39 39 A K H X4 S+ 0 0 122 -3,-2.7 3,-1.0 -4,-0.1 4,-0.2 0.832 110.4 46.3 -99.4 -45.6 7.1 -1.9 -11.2 40 40 A Y H >< S+ 0 0 21 -4,-1.2 3,-1.0 1,-0.2 7,-0.3 0.444 80.5 107.5 -77.5 5.0 6.3 1.0 -8.7 41 41 A Q T 3< S+ 0 0 115 -4,-0.9 -1,-0.2 1,-0.3 -3,-0.1 0.839 81.3 48.8 -52.4 -28.6 9.9 0.6 -7.5 42 42 A N T < S+ 0 0 138 -3,-1.0 2,-1.8 1,-0.1 -1,-0.3 0.779 91.7 84.6 -82.3 -25.6 10.5 3.9 -9.4 43 43 A D <> - 0 0 35 -3,-1.0 4,-1.9 -4,-0.2 3,-0.5 -0.541 63.2-170.8 -77.8 86.0 7.5 5.5 -7.7 44 44 A K H > S+ 0 0 164 -2,-1.8 4,-2.0 1,-0.2 5,-0.2 0.814 82.9 61.5 -49.5 -28.6 9.2 6.5 -4.4 45 45 A E H > S+ 0 0 51 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.981 104.9 43.8 -64.9 -52.8 5.8 7.4 -3.1 46 46 A V H > S+ 0 0 0 -3,-0.5 4,-3.5 1,-0.2 5,-0.4 0.845 109.4 61.2 -61.2 -30.2 4.5 3.8 -3.4 47 47 A M H X S+ 0 0 57 -4,-1.9 4,-2.6 -7,-0.3 5,-0.3 0.973 103.2 46.8 -62.9 -52.1 7.8 2.6 -1.9 48 48 A D H X S+ 0 0 101 -4,-2.0 4,-0.9 1,-0.2 -1,-0.2 0.875 119.9 42.7 -57.4 -35.1 7.3 4.5 1.4 49 49 A V H X S+ 0 0 8 -4,-1.6 4,-3.3 -5,-0.2 5,-0.2 0.960 117.8 40.9 -77.8 -54.4 3.8 3.1 1.5 50 50 A F H X S+ 0 0 32 -4,-3.5 4,-1.5 1,-0.2 -2,-0.2 0.824 117.1 52.0 -65.8 -26.4 4.4 -0.5 0.4 51 51 A N H X S+ 0 0 77 -4,-2.6 4,-1.6 -5,-0.4 -1,-0.2 0.805 113.1 44.5 -79.5 -26.4 7.6 -0.5 2.6 52 52 A K H X>S+ 0 0 55 -4,-0.9 4,-2.9 -5,-0.3 5,-0.5 0.934 110.1 53.8 -79.7 -48.1 5.5 0.7 5.6 53 53 A I H X5S+ 0 0 40 -4,-3.3 4,-1.8 1,-0.2 -2,-0.2 0.907 117.4 37.9 -51.3 -45.2 2.7 -1.7 5.0 54 54 A S H <5S+ 0 0 63 -4,-1.5 -1,-0.2 -5,-0.2 -2,-0.2 0.863 113.5 54.7 -79.4 -35.3 5.2 -4.6 5.0 55 55 A Q H <5S+ 0 0 148 -4,-1.6 -2,-0.2 1,-0.2 -1,-0.2 0.907 123.0 29.1 -65.8 -37.3 7.4 -3.2 7.8 56 56 A L H <5S+ 0 0 73 -4,-2.9 -2,-0.2 1,-0.2 -1,-0.2 0.775 134.4 34.4 -91.5 -28.9 4.4 -2.9 10.1 57 57 A F S <