==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 21-MAY-96 1LOI . COMPND 2 MOLECULE: CYCLIC 3',5'-AMP SPECIFIC PHOSPHODIESTERASE RD1; . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR K.J.SMITH,G.SCOTLAND,J.BEATTIE,I.P.TRAYER,M.D.HOUSLAY . 25 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2707.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 72.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 36.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 36.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 172 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 93.5 -13.9 4.1 6.2 2 2 A P >> + 0 0 104 0, 0.0 4,-1.1 0, 0.0 3,-0.9 0.955 360.0 25.8 -82.9 -69.2 -13.5 0.4 7.0 3 3 A L H 3> S+ 0 0 129 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.848 117.7 62.6 -68.3 -31.0 -12.9 -1.3 3.7 4 4 A V H 3> S+ 0 0 80 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.746 98.8 58.5 -66.9 -18.0 -11.5 1.9 2.2 5 5 A D H <> S+ 0 0 96 -3,-0.9 4,-1.0 2,-0.2 -1,-0.2 0.919 111.5 37.1 -77.5 -42.9 -8.8 1.6 4.8 6 6 A F H X S+ 0 0 151 -4,-1.1 4,-1.3 2,-0.2 -2,-0.2 0.733 110.0 66.3 -80.3 -20.4 -7.5 -1.8 3.7 7 7 A F H < S+ 0 0 128 -4,-1.9 3,-0.4 1,-0.2 -2,-0.2 0.988 107.2 36.4 -65.2 -56.8 -8.2 -0.9 0.0 8 8 A C H >< S+ 0 0 105 -4,-1.3 3,-0.6 1,-0.2 -1,-0.2 0.827 102.8 78.8 -66.4 -26.8 -5.5 1.8 -0.2 9 9 A E H 3< S- 0 0 99 -4,-1.0 2,-0.3 1,-0.3 -1,-0.2 0.951 122.1 -7.1 -45.0 -58.1 -3.3 -0.3 2.1 10 10 A T T 3< S+ 0 0 87 -4,-1.3 -1,-0.3 -3,-0.4 -2,-0.1 -0.689 113.3 80.3-143.3 87.4 -2.3 -2.5 -0.8 11 11 A C S < S+ 0 0 57 -3,-0.6 -3,-0.1 -2,-0.3 -4,-0.1 0.032 91.3 14.4-148.0-101.3 -4.2 -1.8 -4.1 12 12 A S S S+ 0 0 98 1,-0.2 3,-0.2 -5,-0.2 -4,-0.1 0.221 104.3 88.0 -76.6 19.8 -3.7 0.8 -6.8 13 13 A K >> + 0 0 28 1,-0.2 3,-0.9 2,-0.1 4,-0.8 -0.125 36.8 129.8-114.4 46.8 -0.2 1.7 -5.4 14 14 A P T 34 S+ 0 0 67 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.500 73.0 62.1 -72.1 -1.9 2.0 -0.8 -7.3 15 15 A W T >4 S+ 0 0 181 -3,-0.2 3,-0.9 2,-0.1 4,-0.4 0.742 96.3 56.0 -94.3 -26.5 4.2 2.2 -8.1 16 16 A L G X4 S+ 0 0 58 -3,-0.9 3,-0.7 1,-0.2 4,-0.4 0.778 87.2 78.1 -75.1 -25.3 5.0 2.9 -4.5 17 17 A V G >X S+ 0 0 74 -4,-0.8 4,-1.1 1,-0.2 3,-0.6 0.734 81.9 72.3 -57.5 -16.1 6.4 -0.6 -4.0 18 18 A G G X4 S+ 0 0 54 -3,-0.9 3,-0.5 1,-0.2 4,-0.5 0.975 103.3 34.9 -66.2 -52.4 9.5 0.8 -5.8 19 19 A W G <> S+ 0 0 135 -3,-0.7 4,-0.5 -4,-0.4 -1,-0.2 0.343 106.5 75.7 -85.9 15.7 10.7 2.9 -2.9 20 20 A W H <> S+ 0 0 91 -3,-0.6 4,-0.7 -4,-0.4 3,-0.3 0.831 78.6 70.4 -88.7 -36.5 9.3 0.2 -0.5 21 21 A D H X< S+ 0 0 118 -4,-1.1 3,-1.5 -3,-0.5 -2,-0.1 0.929 102.1 44.5 -45.5 -51.2 12.2 -2.2 -1.3 22 22 A Q H >4 S+ 0 0 92 -4,-0.5 3,-1.7 1,-0.3 -1,-0.3 0.859 98.6 72.7 -65.3 -31.6 14.6 0.2 0.6 23 23 A F H 3< + 0 0 151 -4,-0.5 -1,-0.3 -3,-0.3 -2,-0.2 0.684 65.9 100.4 -57.7 -12.7 12.0 0.5 3.4 24 24 A K T << 0 0 152 -3,-1.5 -1,-0.3 -4,-0.7 -2,-0.1 0.756 360.0 360.0 -48.3 -18.2 13.0 -3.1 4.3 25 25 A R < 0 0 200 -3,-1.7 -2,-0.2 -4,-0.1 -1,-0.1 0.817 360.0 360.0-103.3 360.0 15.0 -1.4 7.1