==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-AUG-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 26-JAN-12 2LOP . COMPND 2 MOLECULE: TRANSMEMBRANE PROTEIN 14A; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR C.EICHMANN,C.KLAMMT,I.MASLENNIKOV,W.KWIATKOWSKI,R.RIEK,S.CHO . 99 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 9908.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 78 78.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 17 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 58 58.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 228 0, 0.0 3,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 117.8 -13.5 -19.0 -18.6 2 2 A D - 0 0 137 1,-0.2 2,-1.0 0, 0.0 0, 0.0 0.722 360.0-126.7 62.6 124.4 -16.6 -19.1 -20.8 3 3 A L + 0 0 179 3,-0.0 2,-0.2 0, 0.0 -1,-0.2 -0.656 60.4 130.1-103.0 74.3 -16.5 -17.0 -23.9 4 4 A I - 0 0 119 -2,-1.0 5,-0.1 -3,-0.3 0, 0.0 -0.680 68.4 -42.5-119.4 173.8 -19.7 -14.9 -23.5 5 5 A G > - 0 0 49 -2,-0.2 4,-0.6 1,-0.1 -1,-0.2 -0.043 50.7-170.0 -37.8 124.5 -20.5 -11.3 -23.7 6 6 A F H >> S+ 0 0 168 2,-0.2 4,-2.1 3,-0.1 3,-0.7 0.931 77.6 59.8 -85.9 -56.4 -17.8 -9.4 -21.9 7 7 A G H 3> S+ 0 0 37 1,-0.3 4,-1.8 2,-0.2 3,-0.5 0.868 104.0 53.9 -37.2 -54.4 -19.3 -5.9 -21.7 8 8 A Y H >> S+ 0 0 199 1,-0.3 4,-2.6 2,-0.2 3,-0.6 0.909 106.9 50.1 -48.7 -50.7 -22.2 -7.3 -19.7 9 9 A A H X S+ 0 0 52 -4,-2.7 4,-1.7 1,-0.3 3,-0.6 0.897 113.1 53.4 -41.2 -54.3 -21.8 -5.1 -8.0 17 17 A I H >< S+ 0 0 87 -4,-3.0 3,-0.7 -5,-0.4 -1,-0.3 0.909 107.0 51.9 -48.4 -48.7 -18.4 -3.7 -7.2 18 18 A F H 3< S+ 0 0 178 -4,-2.3 -1,-0.3 -3,-0.5 -2,-0.2 0.845 110.9 47.6 -57.3 -36.2 -20.0 -0.4 -6.4 19 19 A G H << S- 0 0 44 -4,-2.0 -1,-0.3 -3,-0.6 -2,-0.2 0.683 96.6-156.0 -78.0 -19.8 -22.3 -2.2 -4.0 20 20 A Y << + 0 0 149 -4,-1.7 -3,-0.1 -3,-0.7 -2,-0.1 0.899 47.4 123.6 38.7 91.4 -19.4 -4.1 -2.5 21 21 A K + 0 0 180 -5,-0.1 -1,-0.1 0, 0.0 -4,-0.1 -0.103 57.9 54.9-171.6 53.7 -21.0 -7.2 -1.2 22 22 A R S S+ 0 0 234 -5,-0.1 -5,-0.0 -6,-0.0 -6,-0.0 0.319 77.7 85.9-151.5 -56.9 -19.3 -10.3 -2.7 23 23 A R + 0 0 169 1,-0.1 -1,-0.0 -6,-0.0 0, 0.0 0.114 36.6 154.1 -49.5 172.1 -15.6 -10.3 -2.1 24 24 A G + 0 0 75 -3,-0.1 -1,-0.1 0, 0.0 0, 0.0 0.200 31.3 106.9 157.2 65.3 -14.1 -11.7 1.1 25 25 A G - 0 0 61 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.653 47.8-161.8-121.9 -42.5 -10.6 -13.0 0.9 26 26 A V + 0 0 98 1,-0.1 -3,-0.0 2,-0.0 0, 0.0 0.967 22.8 165.1 50.4 64.5 -8.4 -10.5 2.7 27 27 A P - 0 0 110 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.918 65.7 -77.9 -75.0 -46.8 -5.2 -11.7 1.1 28 28 A S S >> S+ 0 0 80 0, 0.0 4,-2.0 0, 0.0 3,-0.6 0.037 115.8 87.2 176.1 -43.8 -3.1 -8.7 2.0 29 29 A L H 3> S+ 0 0 132 1,-0.3 4,-1.8 2,-0.2 3,-0.3 0.875 91.1 57.3 -41.9 -47.1 -3.9 -5.9 -0.4 30 30 A I H >> S+ 0 0 47 1,-0.3 4,-2.4 2,-0.2 3,-0.8 0.932 105.2 48.6 -50.4 -52.6 -6.7 -5.0 2.0 31 31 A A H <> S+ 0 0 51 -3,-0.6 4,-2.5 1,-0.3 -1,-0.3 0.820 109.7 54.6 -57.5 -31.7 -4.2 -4.6 4.8 32 32 A G H 3X S+ 0 0 36 -4,-2.0 4,-2.0 -3,-0.3 -1,-0.3 0.791 106.8 50.3 -72.0 -29.7 -2.3 -2.5 2.4 33 33 A L H X S+ 0 0 180 -4,-2.1 4,-1.8 1,-0.3 3,-0.7 0.886 113.8 48.0 -38.1 -58.8 -5.2 10.2 5.2 42 42 A G H >X S+ 0 0 22 -4,-2.2 4,-2.1 -5,-0.5 3,-0.6 0.920 108.6 53.1 -50.2 -51.9 -3.2 11.0 8.3 43 43 A A H 3< S+ 0 0 5 -4,-2.7 9,-0.4 -5,-0.3 -1,-0.3 0.820 110.9 49.4 -54.0 -32.2 -0.7 13.0 6.3 44 44 A Y H << S+ 0 0 195 -4,-2.2 -1,-0.3 -3,-0.7 -2,-0.2 0.788 104.5 58.4 -77.2 -30.0 -3.7 14.9 5.0 45 45 A R H << S- 0 0 195 -4,-1.8 -2,-0.2 -3,-0.6 -1,-0.2 0.908 92.6-151.0 -65.3 -44.0 -4.9 15.4 8.5 46 46 A V < + 0 0 113 -4,-2.1 -3,-0.1 4,-0.2 -2,-0.1 0.995 48.3 129.6 66.9 78.0 -1.7 17.2 9.5 47 47 A S S S- 0 0 84 -5,-0.2 -4,-0.1 2,-0.2 3,-0.1 0.639 86.7 -50.9-123.9 -48.8 -1.5 16.4 13.2 48 48 A N S S+ 0 0 154 2,-0.2 3,-0.0 -6,-0.1 -5,-0.0 0.240 100.3 105.0-159.7 -50.4 2.0 15.1 13.9 49 49 A D S S- 0 0 116 -7,-0.0 -2,-0.2 1,-0.0 3,-0.1 0.050 83.0 -85.5 -41.9 156.2 2.8 12.3 11.4 50 50 A K - 0 0 145 1,-0.1 -4,-0.2 -4,-0.1 -3,-0.2 0.139 57.6 -80.1 -55.9-178.6 5.2 13.3 8.6 51 51 A R > - 0 0 191 1,-0.2 4,-1.5 -5,-0.1 -1,-0.1 -0.317 56.7 -78.2 -83.6 169.8 3.9 14.9 5.4 52 52 A D T 4 S+ 0 0 94 -9,-0.4 2,-2.9 2,-0.2 -1,-0.2 0.083 111.5 27.8 -56.8 177.4 2.2 13.1 2.5 53 53 A V T >> S+ 0 0 56 1,-0.3 4,-1.3 -3,-0.1 3,-0.8 -0.404 115.9 61.3 67.6 -75.3 4.3 11.2 -0.0 54 54 A K H 3> S+ 0 0 132 -2,-2.9 4,-2.1 1,-0.3 3,-0.4 0.881 94.1 66.2 -45.5 -45.0 7.1 10.5 2.5 55 55 A V H >X S+ 0 0 8 -4,-1.5 4,-1.8 1,-0.3 3,-0.7 0.913 97.9 51.6 -42.0 -57.1 4.4 8.6 4.5 56 56 A S H <> S+ 0 0 31 -3,-0.8 4,-2.7 1,-0.3 3,-0.4 0.889 106.1 55.2 -47.9 -45.8 4.3 6.0 1.7 57 57 A L H 3X S+ 0 0 117 -4,-1.3 4,-2.2 -3,-0.4 -1,-0.3 0.889 109.6 46.3 -55.3 -41.9 8.0 5.7 1.9 58 58 A F H X S+ 0 0 59 -4,-2.3 4,-1.9 2,-0.2 3,-0.7 0.969 113.9 43.8 -55.3 -59.4 6.4 -3.2 5.7 64 64 A A H >X S+ 0 0 29 -4,-3.0 4,-2.9 1,-0.3 3,-0.6 0.925 112.3 53.3 -51.3 -50.3 9.6 -4.5 4.3 65 65 A T H 3< S+ 0 0 91 -4,-3.0 -1,-0.3 1,-0.3 -2,-0.2 0.809 109.4 49.9 -55.1 -31.5 11.3 -4.1 7.6 66 66 A I H << S+ 0 0 114 -4,-1.9 -1,-0.3 -3,-0.7 -2,-0.2 0.790 110.7 50.6 -76.9 -29.9 8.4 -6.2 9.0 67 67 A M H << S- 0 0 72 -4,-1.9 2,-0.4 -3,-0.6 -2,-0.2 0.957 88.4-155.6 -71.5 -53.9 9.1 -8.8 6.2 68 68 A G < + 0 0 53 -4,-2.9 2,-1.1 -5,-0.1 -1,-0.1 -0.497 69.5 82.7 110.0 -60.1 12.8 -9.2 6.7 69 69 A V S S- 0 0 90 -2,-0.4 3,-0.1 -3,-0.1 -3,-0.0 -0.704 80.5-138.4 -83.6 100.2 13.8 -10.3 3.3 70 70 A R - 0 0 187 -2,-1.1 -1,-0.0 1,-0.1 -5,-0.0 -0.065 45.9 -57.6 -53.6 158.3 14.1 -7.1 1.3 71 71 A F + 0 0 106 8,-0.1 2,-0.2 9,-0.0 -1,-0.1 0.027 67.2 166.4 -38.3 142.1 12.8 -7.1 -2.2 72 72 A K - 0 0 142 -3,-0.1 8,-0.2 2,-0.1 2,-0.1 -0.801 42.6-106.7-168.3 121.4 14.4 -9.7 -4.4 73 73 A R + 0 0 218 -2,-0.2 2,-0.3 6,-0.1 4,-0.1 -0.299 67.9 119.6 -53.3 119.8 13.4 -11.1 -7.8 74 74 A S - 0 0 91 2,-0.3 6,-0.2 1,-0.2 -2,-0.1 -0.950 63.3 -48.6-167.4 179.7 12.0 -14.5 -7.3 75 75 A K S S+ 0 0 181 -2,-0.3 3,-0.2 2,-0.1 -1,-0.2 0.062 100.9 27.4 -53.6 172.4 8.9 -16.7 -7.6 76 76 A K S S- 0 0 184 1,-0.2 -2,-0.3 2,-0.1 4,-0.2 0.102 82.9-109.6 58.5 179.4 5.6 -15.5 -6.5 77 77 A I S > S+ 0 0 121 3,-0.1 4,-2.3 2,-0.1 5,-0.2 0.049 82.6 112.0-131.9 20.8 4.7 -11.8 -6.4 78 78 A M H > S+ 0 0 135 -3,-0.2 4,-1.0 2,-0.2 -2,-0.1 0.940 90.9 28.4 -59.9 -51.1 4.7 -11.4 -2.6 79 79 A P H >> S+ 0 0 24 0, 0.0 4,-1.3 0, 0.0 3,-0.5 0.960 125.5 45.5 -75.0 -55.6 7.8 -9.2 -2.6 80 80 A A H >> S+ 0 0 37 1,-0.2 4,-2.0 2,-0.2 3,-0.7 0.928 105.5 63.3 -52.5 -50.3 7.5 -7.7 -6.1 81 81 A G H 3X S+ 0 0 26 -4,-2.3 4,-1.8 1,-0.3 3,-0.3 0.871 97.9 56.2 -40.6 -50.1 3.8 -7.0 -5.4 82 82 A L H XX S+ 0 0 45 -4,-1.0 4,-2.5 -3,-0.5 3,-0.7 0.921 106.5 49.0 -49.6 -50.7 4.9 -4.7 -2.6 83 83 A V H X S+ 0 0 92 -4,-2.5 4,-1.3 1,-0.3 3,-0.7 0.938 109.7 50.9 -51.9 -52.8 1.5 7.2 -9.8 92 92 A L H 3X S+ 0 0 111 -4,-2.4 4,-2.3 1,-0.3 -1,-0.3 0.804 109.8 52.9 -55.3 -30.0 -1.8 7.9 -8.0 93 93 A R H 3X S+ 0 0 85 -4,-1.9 4,-2.6 -3,-0.5 -1,-0.3 0.814 96.6 65.3 -74.8 -32.3 0.1 10.7 -6.4 94 94 A L H << S+ 0 0 129 -4,-1.9 4,-0.4 -3,-0.7 -1,-0.2 0.855 114.6 31.9 -57.3 -36.4 1.2 12.1 -9.7 95 95 A V H >X S+ 0 0 101 -4,-1.3 4,-2.1 2,-0.2 3,-1.1 0.829 109.9 66.3 -88.1 -38.5 -2.4 12.8 -10.4 96 96 A L H 3< S+ 0 0 97 -4,-2.3 -2,-0.2 1,-0.3 -3,-0.2 0.883 89.6 68.4 -48.8 -43.4 -3.3 13.5 -6.7 97 97 A L T 3< S+ 0 0 138 -4,-2.6 -1,-0.3 1,-0.2 -2,-0.2 0.892 107.0 38.4 -41.8 -51.3 -1.0 16.6 -7.0 98 98 A L T <4 0 0 160 -3,-1.1 -1,-0.2 -4,-0.4 -2,-0.2 0.974 360.0 360.0 -65.3 -57.1 -3.6 18.1 -9.3 99 99 A L < 0 0 170 -4,-2.1 -1,-0.2 0, 0.0 -2,-0.2 0.745 360.0 360.0 -40.9 360.0 -6.6 16.8 -7.4