==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 03-FEB-10 3LO1 . COMPND 2 MOLECULE: NEUTROPHIL DEFENSIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.PAZGIER,W.LU . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2521.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 40.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 112 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 175.3 -5.7 -18.8 15.4 2 2 A a - 0 0 47 28,-0.2 2,-0.4 14,-0.0 28,-0.2 -0.787 360.0-156.4-110.1 158.4 -5.6 -15.4 13.6 3 3 A Y E -A 29 0A 120 26,-2.5 26,-3.3 -2,-0.3 2,-0.5 -0.999 21.8-124.2-139.5 136.1 -3.4 -14.5 10.6 4 4 A b E -A 28 0A 61 -2,-0.4 2,-0.3 24,-0.3 24,-0.2 -0.717 46.2-178.2 -66.8 126.3 -1.9 -11.4 9.0 5 5 A R E -A 27 0A 64 22,-2.8 22,-2.9 -2,-0.5 14,-0.1 -0.969 17.6-126.5-133.7 150.0 -3.3 -11.5 5.4 6 6 A I S S+ 0 0 74 -2,-0.3 20,-0.1 20,-0.2 -2,-0.0 -0.983 85.8 6.4-139.6 134.6 -3.0 -9.5 2.3 7 7 A P S S- 0 0 123 0, 0.0 2,-0.3 0, 0.0 -2,-0.1 -0.935 127.1 -37.2 -79.2 -27.7 -5.0 -8.3 0.4 8 8 A A - 0 0 57 18,-0.1 -2,-0.1 -4,-0.1 21,-0.1 -0.865 66.2 -73.1-150.3 175.3 -7.9 -9.2 2.7 9 9 A c - 0 0 32 -2,-0.3 2,-0.2 1,-0.1 3,-0.1 -0.329 56.3 -96.1 -69.6 156.4 -9.4 -11.8 5.1 10 10 A I > - 0 0 98 1,-0.1 3,-2.9 4,-0.1 -1,-0.1 -0.510 56.9 -83.4 -69.9 144.3 -10.8 -15.1 3.8 11 11 A A T 3 S+ 0 0 100 1,-0.3 -1,-0.1 -2,-0.2 3,-0.1 -0.211 122.6 26.4 -49.1 137.8 -14.6 -15.0 3.3 12 12 A G T 3 S+ 0 0 85 1,-0.3 -1,-0.3 -3,-0.1 2,-0.1 0.064 98.6 109.2 92.6 -27.4 -16.1 -15.7 6.8 13 13 A E < - 0 0 48 -3,-2.9 2,-0.4 16,-0.0 -1,-0.3 -0.386 65.6-128.6 -74.8 160.2 -13.1 -14.4 8.7 14 14 A R - 0 0 188 16,-2.9 16,-2.9 -3,-0.1 2,-0.9 -0.952 12.1-128.2-109.7 132.8 -13.3 -11.1 10.7 15 15 A R E +B 29 0A 134 -2,-0.4 14,-0.2 14,-0.2 3,-0.1 -0.731 35.8 170.8 -73.9 109.3 -10.7 -8.3 10.3 16 16 A A E - 0 0 66 12,-3.1 2,-0.3 -2,-0.9 -1,-0.2 0.397 59.0 -39.4-103.2 -2.1 -9.9 -7.8 14.0 17 17 A G E -B 28 0A 28 11,-1.0 11,-2.7 -3,-0.1 2,-0.3 -0.961 66.7 -85.9 171.3-154.1 -6.9 -5.5 13.4 18 18 A T E -B 27 0A 80 -2,-0.3 2,-0.3 9,-0.3 9,-0.2 -0.915 18.9-147.6-143.1 157.7 -3.9 -4.8 11.2 19 19 A b E -B 26 0A 19 7,-2.3 7,-3.2 -2,-0.3 2,-0.5 -0.972 6.1-151.2-124.2 151.2 -0.3 -5.9 10.9 20 20 A I E +B 25 0A 147 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.988 35.5 144.3-120.6 121.3 2.7 -3.8 9.6 21 21 A Y E > +B 24 0A 133 3,-1.8 3,-1.4 -2,-0.5 -2,-0.1 -0.963 63.8 3.5-162.2 134.9 5.3 -6.0 8.0 22 22 A Q T 3 S- 0 0 151 -2,-0.3 3,-0.1 1,-0.2 -2,-0.0 0.818 127.3 -60.1 48.8 38.0 7.7 -5.5 5.0 23 23 A G T 3 S+ 0 0 80 1,-0.2 2,-0.3 0, 0.0 -1,-0.2 0.673 114.5 104.7 72.7 20.1 6.4 -1.9 4.5 24 24 A R E < S- B 0 21A 172 -3,-1.4 -3,-1.8 -18,-0.0 2,-0.5 -0.932 70.9-117.9-132.7 155.4 2.8 -3.0 3.9 25 25 A L E - B 0 20A 107 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.790 32.0-169.1 -92.9 126.2 -0.5 -3.0 5.8 26 26 A W E - B 0 19A 55 -7,-3.2 -7,-2.3 -2,-0.5 2,-0.4 -0.819 23.8-117.4-111.9 152.0 -1.9 -6.5 6.4 27 27 A A E -AB 5 18A 2 -22,-2.9 -22,-2.8 -2,-0.3 2,-0.8 -0.767 22.4-135.2 -81.2 135.7 -5.4 -7.3 7.7 28 28 A F E -AB 4 17A 74 -11,-2.7 -12,-3.1 -2,-0.4 -11,-1.0 -0.865 31.7-163.1 -94.2 110.9 -5.3 -9.2 11.0 29 29 A c E AB 3 15A 0 -26,-3.3 -26,-2.5 -2,-0.8 -14,-0.2 -0.873 360.0 360.0-111.8 122.8 -7.8 -11.9 10.4 30 30 A a 0 0 64 -16,-2.9 -16,-2.9 -2,-0.5 -28,-0.2 -0.854 360.0 360.0-115.0 360.0 -9.5 -14.1 12.9