==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 03-FEB-10 3LOE . COMPND 2 MOLECULE: NEUTROPHIL DEFENSIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.PAZGIER,W.LU . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2520.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 40.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 120 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 160.2 -12.9 5.2 -17.4 2 2 A a - 0 0 81 28,-0.2 2,-0.3 11,-0.0 28,-0.2 -0.880 360.0-162.7-111.1 140.1 -12.5 2.8 -14.5 3 3 A Y E -A 29 0A 128 26,-2.9 26,-3.4 -2,-0.4 2,-0.5 -0.805 19.8-124.2-114.5 156.8 -13.7 -0.8 -14.5 4 4 A b E +A 28 0A 48 -2,-0.3 2,-0.4 24,-0.2 24,-0.2 -0.884 40.8 176.2-101.4 124.8 -14.3 -3.3 -11.7 5 5 A R E -A 27 0A 53 22,-2.5 22,-3.0 -2,-0.5 14,-0.1 -0.981 21.5-133.3-137.7 145.3 -12.4 -6.5 -12.3 6 6 A I S S+ 0 0 70 -2,-0.4 20,-0.1 20,-0.2 -2,-0.0 -0.991 84.6 4.0-132.9 134.5 -11.6 -9.9 -10.7 7 7 A P S S- 0 0 131 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.986 127.5 -24.9 -99.7 0.9 -8.9 -11.3 -10.4 8 8 A A S S- 0 0 60 19,-0.1 -2,-0.1 21,-0.0 21,-0.1 -0.981 71.3 -80.4-162.7 162.1 -6.7 -8.5 -11.8 9 9 A c - 0 0 35 -2,-0.3 3,-0.1 -4,-0.1 2,-0.1 -0.323 50.2-115.4 -64.3 157.2 -6.7 -5.5 -14.1 10 10 A I > - 0 0 93 1,-0.2 3,-1.9 4,-0.1 -1,-0.1 -0.274 52.7 -53.2 -87.6 177.0 -6.5 -6.2 -17.8 11 11 A A T 3 S+ 0 0 102 1,-0.3 -1,-0.2 -2,-0.1 3,-0.1 -0.234 125.8 13.6 -56.9 138.9 -3.6 -5.1 -20.1 12 12 A G T 3 S+ 0 0 87 1,-0.3 2,-0.3 -3,-0.1 -1,-0.3 0.603 104.1 111.0 69.2 14.0 -2.8 -1.4 -20.0 13 13 A E < - 0 0 37 -3,-1.9 2,-0.4 -11,-0.0 -1,-0.3 -0.787 50.9-154.8-108.3 158.3 -4.8 -0.8 -16.8 14 14 A R - 0 0 180 16,-2.2 16,-2.7 -2,-0.3 2,-0.5 -0.984 22.3-115.2-129.3 147.4 -3.6 0.0 -13.3 15 15 A R E +B 29 0A 149 -2,-0.4 14,-0.2 14,-0.2 3,-0.1 -0.686 37.7 162.1 -81.2 126.4 -5.3 -0.7 -10.0 16 16 A Y E - 0 0 153 12,-2.9 2,-0.3 -2,-0.5 13,-0.1 0.451 61.6 -36.1-119.8 -6.0 -6.3 2.4 -8.0 17 17 A G E -B 28 0A 26 11,-0.9 11,-2.3 2,-0.0 2,-0.3 -0.922 67.8 -68.7 178.1-151.2 -8.9 1.1 -5.5 18 18 A T E -B 27 0A 81 9,-0.3 2,-0.4 -2,-0.3 9,-0.2 -0.958 20.9-150.8-137.5 142.6 -11.7 -1.3 -4.9 19 19 A b E -B 26 0A 20 7,-2.5 7,-2.9 -2,-0.3 2,-0.5 -0.912 11.1-155.5-108.5 151.2 -15.4 -1.9 -6.0 20 20 A I E +B 25 0A 138 -2,-0.4 2,-0.3 5,-0.2 5,-0.2 -0.989 35.4 123.6-125.2 116.2 -18.0 -3.6 -3.8 21 21 A Y E > +B 24 0A 101 3,-1.6 3,-2.3 -2,-0.5 -2,-0.1 -0.939 63.9 22.3-162.3 159.6 -21.0 -5.4 -5.3 22 22 A Q T 3 S- 0 0 167 1,-0.3 3,-0.1 -2,-0.3 -2,-0.0 0.763 126.6 -67.1 50.1 31.1 -22.6 -8.8 -5.2 23 23 A G T 3 S+ 0 0 82 1,-0.3 2,-0.3 0, 0.0 -1,-0.3 0.642 112.7 109.7 69.7 16.9 -20.8 -9.5 -1.9 24 24 A R E < - B 0 21A 130 -3,-2.3 -3,-1.6 2,-0.0 2,-0.5 -0.837 67.0-123.4-126.1 161.4 -17.5 -9.4 -3.6 25 25 A L E - B 0 20A 123 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.905 29.7-171.5-107.8 124.7 -14.4 -7.2 -3.8 26 26 A W E - B 0 19A 33 -7,-2.9 -7,-2.5 -2,-0.5 2,-0.5 -0.834 26.9-112.6-115.3 145.8 -13.3 -6.0 -7.2 27 27 A A E -AB 5 18A 7 -22,-3.0 -22,-2.5 -2,-0.3 2,-0.8 -0.744 25.4-135.3 -72.2 130.6 -10.2 -4.2 -8.4 28 28 A A E -AB 4 17A 19 -11,-2.3 -12,-2.9 -2,-0.5 -11,-0.9 -0.793 32.7-169.9 -85.4 111.7 -11.0 -0.6 -9.6 29 29 A c E AB 3 15A 0 -26,-3.4 -26,-2.9 -2,-0.8 -14,-0.2 -0.911 360.0 360.0-118.5 127.9 -8.9 -0.6 -12.8 30 30 A a 0 0 66 -16,-2.7 -16,-2.2 -2,-0.4 -28,-0.2 -0.898 360.0 360.0-131.6 360.0 -8.2 2.5 -14.9