==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 19-APR-95 1LPH . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR E.CISZAK,J.M.BEALS,B.H.FRANK,J.C.BAKER,N.D.CARTER,G.D.SMITH . 102 4 6 2 4 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6283.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 66 64.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 5.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 32.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 4.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 46 0, 0.0 4,-1.2 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0-129.7 -0.8 19.5 -12.0 2 2 A I H >>> + 0 0 1 2,-0.2 4,-2.8 1,-0.2 5,-0.8 0.969 360.0 56.7 -68.6 -50.7 1.0 16.8 -10.2 3 3 A V H 3>>S+ 0 0 36 1,-0.3 5,-3.3 3,-0.2 4,-1.7 0.886 105.4 49.2 -46.3 -54.4 -0.4 14.0 -12.4 4 4 A E H 34>S+ 0 0 79 3,-0.2 5,-0.6 4,-0.2 -1,-0.3 0.874 120.7 37.0 -55.2 -43.9 0.9 15.5 -15.6 5 5 A Q H <<>S+ 0 0 56 -4,-1.2 5,-0.6 -3,-0.5 -2,-0.2 0.914 132.5 19.5 -72.2 -60.6 4.4 15.9 -14.1 6 6 A a H <5S+ 0 0 0 -4,-2.8 22,-1.6 3,-0.2 5,-0.3 0.757 134.2 33.6 -91.3 -32.7 4.9 12.9 -11.9 7 7 A b T <> - 0 0 60 -2,-0.3 4,-1.4 13,-0.1 3,-1.3 -0.756 39.4-113.1 -93.5 143.6 12.6 14.7 -9.4 13 13 A L H 3> S+ 0 0 66 -2,-0.3 4,-0.9 1,-0.3 -1,-0.1 0.764 122.1 61.1 -54.7 -30.3 12.0 14.6 -5.6 14 14 A Y H 34 S+ 0 0 70 1,-0.2 -1,-0.3 2,-0.2 4,-0.1 0.775 101.9 47.8 -64.1 -36.5 12.6 18.3 -6.0 15 15 A Q H X4 S+ 0 0 73 -3,-1.3 3,-0.7 1,-0.2 -1,-0.2 0.775 109.3 53.4 -75.8 -32.7 9.6 18.6 -8.3 16 16 A L H >< S+ 0 0 0 -4,-1.4 3,-0.7 1,-0.2 -2,-0.2 0.679 100.2 63.9 -71.9 -27.6 7.4 16.6 -5.9 17 17 A E G >< S+ 0 0 74 -4,-0.9 3,-1.2 1,-0.2 -1,-0.2 0.569 84.9 71.5 -75.7 -10.5 8.5 19.1 -3.2 18 18 A N G < S+ 0 0 119 -3,-0.7 -1,-0.2 1,-0.3 -2,-0.2 0.725 95.6 57.5 -77.3 -13.6 6.7 21.9 -5.1 19 19 A Y G < S+ 0 0 37 -3,-0.7 28,-1.9 -4,-0.2 -1,-0.3 0.248 88.1 92.1 -98.6 5.3 3.6 20.0 -3.9 20 20 A c B < A 46 0A 7 -3,-1.2 26,-0.3 26,-0.2 25,-0.1 -0.227 360.0 360.0 -86.4-178.3 4.3 20.2 -0.2 21 21 A N 0 0 108 24,-1.7 25,-0.1 -2,-0.1 -3,-0.1 -0.302 360.0 360.0-116.3 360.0 3.1 23.1 2.0 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 121 0, 0.0 2,-0.1 0, 0.0 -10,-0.0 0.000 360.0 360.0 360.0 158.6 14.9 8.4 -4.9 24 2 B V - 0 0 77 1,-0.1 2,-0.8 -12,-0.0 -13,-0.2 -0.361 360.0-153.3 -69.3 140.9 13.0 6.5 -7.6 25 3 B N + 0 0 131 -2,-0.1 2,-0.3 -15,-0.1 -13,-0.1 -0.932 60.4 118.1-111.3 85.8 13.2 7.8 -11.1 26 4 B Q S S- 0 0 96 -2,-0.8 -15,-0.7 -15,-0.3 2,-0.6 -0.894 77.5 -93.6-148.9 171.6 9.7 6.2 -11.8 27 5 B H - 0 0 98 -2,-0.3 2,-0.5 -17,-0.2 -20,-0.2 -0.921 40.2-160.5 -97.9 114.1 6.2 7.2 -12.8 28 6 B L + 0 0 12 -22,-1.6 2,-0.3 -2,-0.6 -19,-0.1 -0.987 22.0 168.4-108.7 113.1 4.4 7.7 -9.5 29 7 B b > - 0 0 42 -2,-0.5 3,-1.4 -22,-0.1 4,-0.4 -0.885 40.7 -16.4-132.5 156.1 0.7 7.5 -10.2 30 8 B G T >> S- 0 0 22 -2,-0.3 4,-1.1 1,-0.3 3,-0.9 -0.219 130.0 -1.7 53.4-133.9 -2.6 7.2 -8.2 31 9 B S H 3> S+ 0 0 38 1,-0.3 4,-1.9 2,-0.2 -1,-0.3 0.738 132.4 60.2 -58.8 -29.3 -2.1 6.0 -4.6 32 10 B H H <> S+ 0 0 132 -3,-1.4 4,-2.0 2,-0.2 -1,-0.3 0.882 100.8 57.9 -70.4 -32.3 1.7 5.7 -5.1 33 11 B L H <> S+ 0 0 0 -3,-0.9 4,-1.7 -4,-0.4 -2,-0.2 0.918 109.1 41.5 -62.9 -51.2 1.7 9.4 -5.9 34 12 B V H X S+ 0 0 0 -4,-1.1 4,-1.8 2,-0.2 -1,-0.2 0.791 111.9 55.4 -69.8 -32.4 0.2 10.4 -2.5 35 13 B E H X S+ 0 0 60 -4,-1.9 4,-2.2 2,-0.2 -2,-0.2 0.932 109.1 48.7 -67.7 -38.5 2.3 7.9 -0.6 36 14 B A H X S+ 0 0 14 -4,-2.0 4,-4.1 1,-0.2 -2,-0.2 0.906 112.0 48.3 -60.1 -48.9 5.5 9.5 -2.1 37 15 B L H X S+ 0 0 0 -4,-1.7 4,-3.0 2,-0.2 5,-0.3 0.819 109.7 51.4 -62.6 -36.9 4.3 13.0 -1.2 38 16 B Y H X S+ 0 0 26 -4,-1.8 4,-2.4 2,-0.2 -2,-0.2 0.959 115.6 43.1 -64.0 -53.3 3.4 12.0 2.4 39 17 B L H < S+ 0 0 116 -4,-2.2 -2,-0.2 1,-0.2 -3,-0.2 0.970 120.0 42.8 -55.8 -65.3 6.9 10.5 2.7 40 18 B V H < S+ 0 0 22 -4,-4.1 -2,-0.2 1,-0.2 -1,-0.2 0.682 118.9 41.7 -58.5 -31.5 8.5 13.6 0.9 41 19 B c H >< S+ 0 0 6 -4,-3.0 3,-1.0 1,-0.1 -3,-0.2 0.904 79.8 164.3 -88.5 -39.6 6.5 16.4 2.7 42 20 B G G >< + 0 0 42 -4,-2.4 3,-3.4 -5,-0.3 -1,-0.1 -0.275 66.1 7.3 63.9-149.8 6.6 15.0 6.2 43 21 B E G 3 S+ 0 0 158 1,-0.3 -1,-0.2 59,-0.0 60,-0.1 0.447 129.7 56.2 -28.3 -36.4 5.6 17.4 9.0 44 22 B R G < S- 0 0 116 -3,-1.0 -1,-0.3 1,-0.1 59,-0.2 0.585 95.0-151.7 -78.6 -30.3 4.6 20.1 6.6 45 23 B G < - 0 0 5 -3,-3.4 -24,-1.7 -7,-0.2 2,-0.2 0.035 9.0-114.0 71.7 177.8 2.0 18.0 4.8 46 24 B F E -AB 20 101A 1 55,-0.8 55,-3.4 -26,-0.3 2,-0.4 -0.809 7.4-118.1-141.4 176.5 0.9 18.5 1.1 47 25 B F E - B 0 100A 49 -28,-1.9 2,-0.5 -2,-0.2 53,-0.2 -0.970 15.4-161.3-128.1 134.0 -1.8 19.4 -1.2 48 26 B Y E - B 0 99A 7 51,-2.9 51,-1.8 -2,-0.4 2,-0.2 -0.984 19.5-151.9-116.3 125.0 -3.4 17.1 -3.9 49 27 B T - 0 0 61 -2,-0.5 49,-0.2 49,-0.2 -46,-0.2 -0.578 21.4 -89.8-101.1 161.3 -5.3 18.9 -6.7 50 28 B K - 0 0 130 47,-0.3 46,-0.1 -2,-0.2 -1,-0.1 -0.392 53.7 -96.2 -68.1 136.1 -8.2 18.1 -9.0 51 29 B P 0 0 61 0, 0.0 -1,-0.1 0, 0.0 45,-0.0 -0.221 360.0 360.0 -55.7 128.0 -7.3 16.5 -12.3 52 30 B T 0 0 138 -3,-0.1 -2,-0.1 0, 0.0 0, 0.0 0.514 360.0 360.0 -35.9 360.0 -7.0 18.9 -15.3 53 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 54 1 C G > 0 0 76 0, 0.0 4,-0.6 0, 0.0 49,-0.1 0.000 360.0 360.0 360.0-109.8 -7.7 16.9 13.0 55 2 C I H > + 0 0 13 47,-0.3 4,-4.8 2,-0.2 5,-0.3 0.759 360.0 53.5 -92.0 -38.6 -8.1 13.7 11.0 56 3 C V H >>S+ 0 0 12 2,-0.2 4,-1.5 1,-0.2 5,-0.5 0.925 110.6 45.2 -63.5 -49.7 -5.3 12.1 12.8 57 4 C E H 45S+ 0 0 155 1,-0.2 4,-0.4 2,-0.1 5,-0.2 0.891 124.2 36.9 -65.2 -36.6 -6.9 12.8 16.2 58 5 C Q H X5S+ 0 0 72 -4,-0.6 4,-1.0 3,-0.1 -2,-0.2 0.881 125.6 31.5 -82.6 -43.7 -10.3 11.6 14.8 59 6 C d H <5S+ 0 0 17 -4,-4.8 5,-0.3 2,-0.2 -3,-0.2 0.449 114.4 54.4-102.7 2.8 -9.4 8.6 12.5 60 7 C e T <5S+ 0 0 19 -4,-1.5 -3,-0.1 -5,-0.3 -1,-0.1 0.708 116.2 39.5 -98.0 -29.9 -6.3 7.1 14.1 61 8 C T T 4 - 0 0 53 -2,-0.4 4,-1.6 1,-0.0 3,-0.4 -0.115 40.2 -95.5 -84.2 177.0 -16.0 5.3 7.3 66 13 C L H > S+ 0 0 94 1,-0.2 4,-2.1 2,-0.2 -1,-0.0 0.813 125.0 64.2 -68.1 -29.1 -15.8 6.8 3.8 67 14 C Y H 4 S+ 0 0 163 1,-0.2 -1,-0.2 2,-0.2 -3,-0.0 0.811 108.1 37.5 -57.2 -45.4 -18.7 9.1 4.9 68 15 C Q H >4 S+ 0 0 64 -3,-0.4 3,-1.1 1,-0.2 4,-0.4 0.731 111.4 59.6 -81.3 -33.6 -16.5 10.8 7.5 69 16 C L H >< S+ 0 0 14 -4,-1.6 3,-2.1 1,-0.2 -2,-0.2 0.891 95.8 66.2 -62.4 -38.3 -13.5 10.7 5.3 70 17 C E T 3< S+ 0 0 81 -4,-2.1 -1,-0.2 1,-0.3 -2,-0.2 0.413 89.5 62.1 -58.8 -10.7 -15.5 12.8 2.7 71 18 C N T < S+ 0 0 103 -3,-1.1 -1,-0.3 1,-0.1 -2,-0.2 0.616 97.8 60.1 -90.6 -23.6 -15.7 15.9 5.0 72 19 C Y S < S+ 0 0 55 -3,-2.1 28,-0.5 -4,-0.4 -2,-0.2 0.284 89.9 92.4 -90.1 9.2 -11.9 16.0 4.8 73 20 C f 0 0 12 26,-0.1 26,-0.3 -3,-0.1 27,-0.1 -0.142 360.0 360.0 -84.6-173.1 -12.0 16.4 1.0 74 21 C N 0 0 132 24,-2.0 -2,-0.1 25,-0.1 -1,-0.1 -0.886 360.0 360.0 -99.7 360.0 -12.0 19.8 -0.9 75 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 76 1 D F 0 0 229 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 158.3 -0.4 4.1 21.6 77 2 D V - 0 0 93 3,-0.0 2,-0.9 4,-0.0 3,-0.1 -0.895 360.0-112.2-118.3 144.3 -1.0 4.1 17.8 78 3 D N > - 0 0 67 -2,-0.4 4,-2.1 1,-0.2 5,-0.2 -0.794 23.6-162.6 -83.4 111.3 1.7 5.3 15.5 79 4 D Q H > S+ 0 0 85 -2,-0.9 4,-1.6 2,-0.2 -1,-0.2 0.721 87.9 59.0 -60.8 -30.6 0.3 8.5 14.1 80 5 D H H > S+ 0 0 118 2,-0.2 4,-1.0 1,-0.2 -1,-0.2 0.959 110.8 37.1 -67.0 -55.4 2.9 8.2 11.3 81 6 D L H > S+ 0 0 107 2,-0.2 4,-0.6 1,-0.2 -2,-0.2 0.810 115.4 55.5 -66.5 -39.5 1.9 4.8 10.0 82 7 D e H >X S+ 0 0 19 -4,-2.1 4,-2.2 1,-0.2 3,-1.2 0.914 104.6 55.8 -57.8 -48.0 -1.8 5.6 10.6 83 8 D G H 3X S+ 0 0 0 -4,-1.6 4,-2.7 1,-0.3 -1,-0.2 0.782 98.3 57.9 -53.4 -41.2 -1.4 8.7 8.4 84 9 D S H 3X S+ 0 0 20 -4,-1.0 4,-0.7 2,-0.2 -1,-0.3 0.731 109.5 47.9 -69.7 -20.2 -0.1 6.8 5.4 85 10 D H H X S+ 0 0 8 -4,-2.2 4,-3.6 2,-0.2 3,-0.6 0.966 106.3 53.5 -54.9 -56.3 -5.4 7.9 5.8 87 12 D V H 3X S+ 0 0 0 -4,-2.7 4,-1.8 1,-0.3 -1,-0.2 0.853 111.4 48.2 -47.2 -43.3 -3.6 9.6 2.7 88 13 D E H 3X S+ 0 0 68 -4,-0.7 4,-1.3 2,-0.2 -1,-0.3 0.838 112.7 45.8 -68.8 -40.4 -4.5 6.5 0.8 89 14 D A H