==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 08-MAY-02 1LPV . COMPND 2 MOLECULE: DOUBLESEX PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.ZHU,J.WILKEN,N.PHILLIPS,U.NARENDRA,G.CHAN,S.STRATTON, . 52 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5141.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 46.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 19.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 158 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 152.3 -21.6 14.8 7.7 2 2 A I + 0 0 159 1,-0.2 3,-0.1 2,-0.0 0, 0.0 0.270 360.0 60.1-115.4 10.6 -19.1 12.1 8.6 3 3 A S + 0 0 97 1,-0.1 -1,-0.2 3,-0.0 3,-0.0 -0.484 48.7 152.3-137.8 68.0 -18.6 10.6 5.1 4 4 A P + 0 0 120 0, 0.0 2,-1.1 0, 0.0 -1,-0.1 0.584 62.3 80.1 -72.5 -9.8 -17.3 13.4 2.9 5 5 A R + 0 0 186 -3,-0.1 -3,-0.0 2,-0.0 0, 0.0 -0.571 66.5 173.9 -98.8 73.9 -15.6 10.7 0.7 6 6 A T - 0 0 96 -2,-1.1 -3,-0.0 1,-0.1 0, 0.0 -0.501 36.7-102.1 -80.3 151.4 -18.5 9.4 -1.4 7 7 A P - 0 0 55 0, 0.0 2,-0.1 0, 0.0 -1,-0.1 -0.464 37.3-111.8 -72.8 141.7 -17.9 6.9 -4.2 8 8 A P S S- 0 0 91 0, 0.0 14,-0.2 0, 0.0 13,-0.1 -0.455 79.1 -7.7 -73.5 143.4 -17.9 8.3 -7.7 9 9 A N S S- 0 0 37 12,-0.6 2,-0.4 -2,-0.1 10,-0.1 0.361 98.8 -70.0 51.1 162.8 -20.8 7.3 -10.0 10 10 A C > - 0 0 8 1,-0.1 4,-1.0 13,-0.1 10,-0.2 -0.682 35.2-158.7 -86.5 135.7 -23.3 4.7 -8.9 11 11 A A H > S+ 0 0 26 -2,-0.4 4,-1.3 2,-0.2 -1,-0.1 0.783 85.9 67.9 -86.2 -23.8 -22.1 1.1 -8.6 12 12 A R H 4 S+ 0 0 53 1,-0.2 4,-0.2 2,-0.2 3,-0.2 0.954 110.6 34.0 -58.7 -48.1 -25.5 -0.5 -8.9 13 13 A C H >>>S+ 0 0 0 1,-0.2 5,-1.6 2,-0.2 3,-1.3 0.761 106.7 67.5 -83.4 -21.9 -25.9 0.6 -12.5 14 14 A R H ><5S+ 0 0 113 -4,-1.0 3,-0.8 3,-0.3 -1,-0.2 0.862 82.7 79.0 -65.4 -27.2 -22.2 0.3 -13.5 15 15 A N T 3<5S+ 0 0 30 -4,-1.3 -1,-0.3 1,-0.3 -2,-0.2 0.850 105.2 32.3 -46.1 -34.5 -22.6 -3.5 -13.1 16 16 A H T <45S- 0 0 97 -3,-1.3 -1,-0.3 -4,-0.2 -2,-0.2 0.561 136.1 -83.2-100.7 -11.6 -24.3 -3.3 -16.4 17 17 A G T <<5S+ 0 0 64 -3,-0.8 2,-0.3 -4,-0.8 -3,-0.3 0.689 80.8 142.4 114.2 32.1 -22.2 -0.5 -17.9 18 18 A L < - 0 0 67 -5,-1.6 2,-0.2 -7,-0.1 -1,-0.2 -0.737 27.4-175.4-104.0 154.3 -24.0 2.6 -16.5 19 19 A K + 0 0 135 -2,-0.3 -10,-0.1 1,-0.1 -8,-0.1 -0.712 22.2 148.9-149.8 90.9 -22.4 5.8 -15.3 20 20 A I > - 0 0 40 -2,-0.2 3,-0.7 -10,-0.2 -11,-0.1 0.453 62.1-117.2-103.4 -3.4 -24.8 8.4 -13.7 21 21 A T T 3 - 0 0 87 1,-0.2 -12,-0.6 -11,-0.1 3,-0.1 0.431 40.0-109.0 80.5 -3.0 -22.2 9.9 -11.2 22 22 A L T > S+ 0 0 40 1,-0.2 3,-0.7 -14,-0.2 2,-0.7 0.650 71.5 150.0 54.4 13.8 -24.5 8.7 -8.4 23 23 A K T < S- 0 0 171 -3,-0.7 -1,-0.2 1,-0.3 -13,-0.1 -0.633 82.6 -21.5 -77.7 115.1 -25.4 12.4 -7.8 24 24 A G T 3 S+ 0 0 73 -2,-0.7 -1,-0.3 -3,-0.1 -2,-0.1 0.974 118.3 113.3 47.9 62.5 -29.0 12.3 -6.5 25 25 A H X + 0 0 19 -3,-0.7 3,-2.5 -4,-0.1 2,-0.4 0.318 17.3 97.8-127.5-101.5 -29.5 8.9 -8.1 26 26 A K G > S+ 0 0 163 1,-0.3 3,-4.3 2,-0.2 6,-0.2 -0.099 100.4 43.2 41.1 -91.9 -30.0 5.6 -6.3 27 27 A R G 3 S+ 0 0 183 -2,-0.4 -1,-0.3 1,-0.3 5,-0.1 0.813 115.3 54.0 -48.3 -25.0 -33.8 5.6 -6.7 28 28 A Y G < S+ 0 0 162 -3,-2.5 2,-0.7 4,-0.1 -1,-0.3 0.548 82.9 111.2 -86.8 -6.6 -32.9 6.8 -10.2 29 29 A C X - 0 0 0 -3,-4.3 3,-4.3 1,-0.2 4,-0.3 -0.538 63.3-150.7 -70.2 113.9 -30.7 3.7 -10.7 30 30 A K T 3 S+ 0 0 168 -2,-0.7 3,-0.3 1,-0.3 -1,-0.2 0.830 109.0 45.5 -53.1 -22.1 -32.3 1.5 -13.3 31 31 A F T > S+ 0 0 21 1,-0.2 3,-0.9 2,-0.1 -1,-0.3 0.266 76.1 120.1-100.9 9.0 -30.4 -1.1 -11.2 32 32 A R T < S+ 0 0 119 -3,-4.3 -1,-0.2 1,-0.3 -2,-0.1 0.809 97.9 14.8 -45.5 -28.8 -31.6 0.5 -7.9 33 33 A Y T 3 S+ 0 0 174 -4,-0.3 -1,-0.3 -3,-0.3 -2,-0.1 0.297 94.4 137.4-129.7 7.2 -33.1 -2.9 -7.2 34 34 A C < - 0 0 40 -3,-0.9 -3,-0.1 -5,-0.2 -21,-0.0 0.054 35.5-162.8 -46.4 169.7 -31.4 -5.1 -9.8 35 35 A T + 0 0 96 4,-0.0 5,-0.1 5,-0.0 -1,-0.1 0.348 36.9 134.6-140.8 1.9 -30.3 -8.5 -8.4 36 36 A C S > S- 0 0 36 1,-0.2 4,-1.6 3,-0.1 3,-0.5 0.071 74.6 -99.4 -46.2 171.1 -27.7 -9.8 -10.9 37 37 A E H > S+ 0 0 113 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.528 123.1 56.5 -78.2 0.2 -24.6 -11.3 -9.3 38 38 A K H > S+ 0 0 107 2,-0.2 4,-0.6 3,-0.1 -1,-0.2 0.669 106.9 46.8-101.4 -19.7 -22.7 -8.0 -10.0 39 39 A C H > S+ 0 0 1 -3,-0.5 4,-2.1 2,-0.2 5,-0.2 0.837 116.5 44.3 -87.5 -35.6 -25.2 -5.8 -8.1 40 40 A R H X S+ 0 0 144 -4,-1.6 4,-1.9 2,-0.2 5,-0.2 0.917 111.2 53.5 -73.6 -41.6 -25.3 -8.2 -5.2 41 41 A L H X S+ 0 0 70 -4,-0.6 4,-1.7 -5,-0.2 -1,-0.2 0.862 110.2 51.2 -61.6 -30.8 -21.5 -8.5 -5.2 42 42 A T H >X S+ 0 0 11 -4,-0.6 4,-1.6 2,-0.2 3,-1.3 0.996 108.8 44.9 -69.5 -66.9 -21.4 -4.7 -5.1 43 43 A A H 3X S+ 0 0 44 -4,-2.1 4,-2.1 1,-0.3 -1,-0.2 0.836 113.8 56.4 -46.5 -28.2 -23.7 -4.2 -2.1 44 44 A D H 3< S+ 0 0 112 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.896 98.0 59.2 -72.6 -38.5 -21.6 -7.0 -0.6 45 45 A R H << S+ 0 0 197 -4,-1.7 -2,-0.2 -3,-1.3 -1,-0.2 0.907 111.7 40.8 -57.6 -40.5 -18.4 -5.0 -1.2 46 46 A Q H < S+ 0 0 142 -4,-1.6 -2,-0.2 2,-0.0 -1,-0.2 0.960 105.8 69.9 -74.9 -51.3 -19.7 -2.2 1.0 47 47 A R < - 0 0 214 -4,-2.1 2,-0.4 -5,-0.2 0, 0.0 -0.341 69.6-159.0 -66.1 148.1 -21.3 -4.4 3.8 48 48 A V + 0 0 99 1,-0.1 3,-0.1 3,-0.0 -3,-0.1 -0.951 29.1 154.9-134.3 117.7 -18.9 -6.3 6.0 49 49 A M S S+ 0 0 191 -2,-0.4 2,-0.3 1,-0.3 -1,-0.1 0.576 73.4 29.6-114.0 -16.3 -19.8 -9.4 8.0 50 50 A A - 0 0 86 2,-0.0 2,-0.3 0, 0.0 -1,-0.3 -0.996 65.4-156.8-145.7 138.5 -16.4 -11.1 8.3 51 51 A L 0 0 161 -2,-0.3 -3,-0.0 -3,-0.1 0, 0.0 -0.873 360.0 360.0-116.2 149.7 -12.9 -9.7 8.5 52 52 A Q 0 0 265 -2,-0.3 -2,-0.0 0, 0.0 0, 0.0 -0.835 360.0 360.0-118.2 360.0 -9.6 -11.5 7.6