==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 09-MAY-02 1LQ7 . COMPND 2 MOLECULE: ALPHA3W; . SOURCE 2 EXPRESSION_SYSTEM: ESCHERICHIA COLI; . AUTHOR Q.-H.DAI,C.TOMMOS,E.J.FUENTES,M.BLOMBERG,P.L.DUTTON,A.J.WAND . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5267.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 59 88.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 42 62.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 117 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 69.8 -8.2 -15.0 -3.5 2 2 A S + 0 0 78 1,-0.1 2,-3.7 2,-0.0 0, 0.0 0.835 360.0 177.5 -91.7 -41.3 -5.8 -12.7 -5.2 3 3 A R S > S+ 0 0 120 1,-0.2 4,-1.4 4,-0.0 -1,-0.1 -0.282 73.6 71.7 69.4 -59.3 -5.7 -10.0 -2.6 4 4 A V H > S+ 0 0 45 -2,-3.7 4,-4.0 1,-0.2 -1,-0.2 0.813 93.6 58.4 -54.1 -31.1 -3.2 -8.1 -4.6 5 5 A K H > S+ 0 0 145 2,-0.2 4,-1.0 1,-0.2 -1,-0.2 0.981 107.2 41.8 -62.4 -59.7 -6.0 -7.4 -7.0 6 6 A A H > S+ 0 0 76 1,-0.2 4,-0.7 2,-0.2 -1,-0.2 0.655 118.7 52.5 -62.0 -14.4 -8.2 -5.7 -4.4 7 7 A L H >X S+ 0 0 0 -4,-1.4 4,-2.4 2,-0.2 3,-0.7 0.915 91.0 68.4 -85.6 -52.1 -4.9 -4.1 -3.4 8 8 A E H 3X S+ 0 0 116 -4,-4.0 4,-2.5 1,-0.3 -2,-0.2 0.774 101.3 54.9 -36.6 -33.0 -3.8 -2.8 -6.7 9 9 A E H 3X S+ 0 0 121 -4,-1.0 4,-1.8 2,-0.2 -1,-0.3 0.959 110.7 40.6 -68.2 -53.4 -6.8 -0.5 -6.3 10 10 A K H < S+ 0 0 10 -4,-2.4 3,-0.7 1,-0.3 4,-0.5 0.950 109.7 51.6 -50.3 -57.9 -2.0 1.1 -4.0 12 12 A K H >X S+ 0 0 142 -4,-2.5 4,-1.6 -5,-0.3 3,-0.6 0.836 113.6 46.5 -48.3 -35.9 -3.0 2.8 -7.2 13 13 A A H 3X S+ 0 0 25 -4,-1.8 4,-1.6 -3,-0.3 5,-0.3 0.797 107.8 55.1 -76.5 -30.6 -4.9 5.2 -5.0 14 14 A L H << S+ 0 0 1 -4,-2.3 -1,-0.2 -3,-0.7 -2,-0.2 0.369 107.6 54.9 -82.2 4.5 -1.9 5.5 -2.7 15 15 A E H <> S+ 0 0 94 -3,-0.6 4,-1.8 -4,-0.5 -2,-0.2 0.839 110.2 37.6-100.4 -52.2 0.0 6.5 -5.8 16 16 A E H X S+ 0 0 137 -4,-1.6 4,-2.1 2,-0.2 -2,-0.2 0.861 125.0 42.9 -68.4 -37.2 -2.0 9.4 -7.1 17 17 A K H X S+ 0 0 109 -4,-1.6 4,-3.1 2,-0.2 -3,-0.2 0.988 113.6 47.4 -71.1 -63.8 -2.7 10.6 -3.6 18 18 A V H 4 S+ 0 0 2 -5,-0.3 -2,-0.2 1,-0.3 -1,-0.2 0.856 120.7 42.0 -44.7 -40.9 0.8 10.1 -2.1 19 19 A K H < S+ 0 0 141 -4,-1.8 -1,-0.3 1,-0.2 -2,-0.2 0.866 108.9 58.6 -75.0 -38.3 2.0 11.9 -5.2 20 20 A A H < S+ 0 0 62 -4,-2.1 -2,-0.2 -5,-0.2 -1,-0.2 0.891 82.9 101.1 -57.0 -41.7 -0.7 14.4 -5.0 21 21 A L S < S- 0 0 37 -4,-3.1 6,-0.1 1,-0.2 3,-0.1 -0.229 88.5-122.6 -48.7 123.2 0.5 15.4 -1.6 22 22 A G - 0 0 86 1,-0.1 -1,-0.2 2,-0.1 -4,-0.0 0.752 50.9-168.1 -39.6 -28.9 2.5 18.6 -2.0 23 23 A G + 0 0 35 1,-0.1 -1,-0.1 -5,-0.1 -4,-0.0 0.065 40.9 139.3 60.8-177.9 5.2 16.5 -0.4 24 24 A G S S- 0 0 87 -3,-0.1 -1,-0.1 0, 0.0 -2,-0.1 0.627 92.4 -11.6 113.2 26.9 8.5 18.0 0.8 25 25 A G S S+ 0 0 57 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.723 123.7 61.8 113.9 71.4 8.9 16.0 4.0 26 26 A R S > S+ 0 0 171 -5,-0.1 4,-0.6 -4,-0.0 41,-0.1 0.118 98.2 48.8 177.5 -34.8 5.8 14.0 5.0 27 27 A I H > S+ 0 0 21 2,-0.2 4,-5.0 3,-0.1 5,-0.4 0.798 91.7 78.4 -91.4 -35.9 5.1 11.5 2.2 28 28 A E H > S+ 0 0 121 2,-0.2 4,-2.4 1,-0.2 -1,-0.1 0.878 95.9 48.4 -36.2 -58.8 8.7 10.2 2.0 29 29 A E H >> S+ 0 0 98 2,-0.3 3,-1.7 1,-0.2 4,-1.6 0.961 118.3 36.4 -47.2 -73.7 8.0 8.1 5.1 30 30 A L H 3X S+ 0 0 0 -4,-0.6 4,-3.3 1,-0.3 -1,-0.2 0.859 115.7 58.0 -48.6 -39.5 4.8 6.6 4.0 31 31 A K H 3X S+ 0 0 80 -4,-5.0 4,-1.0 2,-0.2 -1,-0.3 0.835 102.6 55.6 -60.4 -33.4 6.3 6.6 0.5 32 32 A K H XX S+ 0 0 121 -4,-2.4 4,-1.3 -3,-1.7 3,-1.0 0.980 113.7 36.5 -62.5 -59.2 9.1 4.4 2.0 33 33 A K H 3X S+ 0 0 87 -4,-1.6 4,-2.4 1,-0.3 -2,-0.2 0.859 110.9 62.9 -61.5 -36.5 6.7 1.7 3.3 34 34 A W H 3X S+ 0 0 12 -4,-3.3 4,-2.2 -5,-0.3 -1,-0.3 0.795 104.1 50.0 -58.3 -27.7 4.6 2.2 0.3 35 35 A E H X S+ 0 0 0 -4,-2.4 4,-2.3 -5,-0.2 3,-1.8 0.929 106.7 48.1 -84.5 -54.7 4.3 -2.5 0.6 38 38 A K H 3X S+ 0 0 81 -4,-2.2 4,-0.7 1,-0.3 -2,-0.2 0.832 109.6 56.6 -54.4 -33.8 3.8 -2.5 -3.1 39 39 A K H 3X S+ 0 0 158 -4,-0.8 4,-1.3 1,-0.2 -1,-0.3 0.743 107.5 49.1 -69.4 -23.6 6.7 -4.9 -3.3 40 40 A K H <> S+ 0 0 83 -3,-1.8 4,-1.5 2,-0.2 -2,-0.2 0.879 104.0 56.1 -81.1 -42.5 4.7 -7.1 -1.0 41 41 A I H < S+ 0 0 6 -4,-2.3 -2,-0.2 1,-0.2 -1,-0.2 0.683 106.4 57.0 -62.4 -17.1 1.5 -6.9 -3.0 42 42 A E H < S+ 0 0 157 -4,-0.7 -1,-0.2 -5,-0.3 -2,-0.2 0.949 109.3 38.9 -77.9 -54.4 3.7 -8.2 -5.8 43 43 A E H >< S+ 0 0 165 -4,-1.3 3,-0.9 2,-0.1 -2,-0.2 0.619 84.1 133.7 -70.8 -12.7 4.9 -11.4 -4.2 44 44 A L T 3< + 0 0 26 -4,-1.5 -40,-0.2 1,-0.2 4,-0.1 -0.171 52.7 63.1 -43.5 100.0 1.4 -11.7 -2.7 45 45 A G T 3 S+ 0 0 61 2,-0.5 2,-3.3 -2,-0.2 -1,-0.2 -0.186 76.4 68.5 179.1 -72.8 0.9 -15.4 -3.5 46 46 A G S < S+ 0 0 87 -3,-0.9 2,-0.1 2,-0.1 -2,-0.1 -0.342 113.2 20.2 -71.3 63.4 3.2 -17.8 -1.8 47 47 A G S S- 0 0 35 -2,-3.3 2,-0.6 1,-0.0 -2,-0.5 -0.191 72.4-125.2 139.4 128.4 1.6 -17.1 1.5 48 48 A G S > S+ 0 0 61 1,-0.2 3,-0.5 -2,-0.1 -2,-0.1 -0.203 70.6 122.6 -87.3 43.0 -1.6 -15.6 2.8 49 49 A E T >> + 0 0 133 -2,-0.6 3,-2.2 1,-0.2 4,-0.6 -0.023 24.6 124.2 -93.0 29.0 0.3 -13.1 4.9 50 50 A V H 3> + 0 0 8 1,-0.3 4,-1.6 2,-0.2 5,-0.3 0.826 50.7 86.5 -56.5 -32.5 -1.5 -10.3 3.1 51 51 A K H <> S+ 0 0 144 -3,-0.5 4,-1.7 1,-0.3 -1,-0.3 0.779 90.4 51.3 -37.6 -31.8 -2.5 -9.2 6.5 52 52 A K H <> S+ 0 0 115 -3,-2.2 4,-2.2 2,-0.2 -1,-0.3 0.977 107.2 48.7 -71.7 -59.1 0.8 -7.4 6.3 53 53 A V H >X S+ 0 0 2 -4,-0.6 4,-2.4 2,-0.2 3,-1.2 0.940 114.0 46.3 -43.4 -67.5 0.3 -5.7 3.0 54 54 A E H >X S+ 0 0 85 -4,-1.6 4,-2.1 1,-0.3 3,-0.9 0.919 111.7 49.4 -39.8 -68.3 -3.1 -4.4 3.9 55 55 A E H 3X S+ 0 0 136 -4,-1.7 4,-2.0 1,-0.3 -1,-0.3 0.789 112.5 52.2 -43.6 -31.9 -2.0 -3.1 7.3 56 56 A E H S+ 0 0 0 -4,-0.7 4,-4.0 2,-0.2 5,-0.5 0.987 107.9 47.7 -74.7 -70.1 -0.8 5.2 4.5 61 61 A E H X5S+ 0 0 70 -4,-1.7 4,-4.0 1,-0.2 5,-0.2 0.863 115.4 49.3 -35.9 -54.0 -4.5 5.9 4.3 62 62 A E H X5S+ 0 0 112 -4,-2.7 4,-1.3 2,-0.2 -1,-0.2 0.967 120.9 33.2 -51.8 -63.5 -4.4 6.9 8.0 63 63 A E H >X5S+ 0 0 53 -4,-1.7 4,-3.3 -5,-0.3 3,-1.3 0.966 120.4 50.2 -57.9 -57.6 -1.4 9.2 7.6 64 64 A I H 3<5S+ 0 0 11 -4,-4.0 -1,-0.2 1,-0.3 -2,-0.2 0.897 108.5 53.8 -47.1 -47.3 -2.4 10.3 4.1 65 65 A K H 3<