==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFREEZE PROTEIN 22-FEB-12 2LQ2 . COMPND 2 MOLECULE: DE NOVO DESIGNED ANTIFREEZE PEPTIDE 4M; . SOURCE 2 SYNTHETIC: YES . AUTHOR A.BHUNIA . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2901.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 76.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 70.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V > 0 0 136 0, 0.0 4,-0.7 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0-178.2 2.1 -0.0 -1.2 2 2 A K H > + 0 0 152 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.687 360.0 69.6 -80.1 -19.5 3.6 2.8 -3.3 3 3 A G H > S+ 0 0 34 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.859 95.6 52.5 -66.4 -35.9 0.3 3.4 -5.0 4 4 A R H 4 S+ 0 0 198 -3,-0.2 -1,-0.2 1,-0.2 -2,-0.2 0.888 118.2 36.1 -67.2 -40.2 -1.3 4.8 -1.9 5 5 A I H X S+ 0 0 95 -4,-0.7 4,-1.9 1,-0.2 -2,-0.2 0.677 109.0 66.5 -85.5 -19.7 1.5 7.3 -1.4 6 6 A D H X S+ 0 0 58 -4,-1.9 4,-1.4 2,-0.2 -2,-0.2 0.858 95.9 56.6 -68.8 -36.1 1.9 7.9 -5.1 7 7 A A H < S+ 0 0 61 -4,-1.4 3,-0.4 2,-0.2 -1,-0.2 0.968 115.4 34.5 -59.2 -56.4 -1.6 9.5 -5.3 8 8 A P H > S+ 0 0 67 0, 0.0 4,-0.8 0, 0.0 -1,-0.2 0.795 119.4 52.3 -69.8 -29.5 -0.9 12.2 -2.7 9 9 A D H X S+ 0 0 77 -4,-1.9 4,-1.5 1,-0.2 -2,-0.2 0.662 93.8 75.4 -80.4 -17.2 2.8 12.4 -3.8 10 10 A F H < S+ 0 0 135 -4,-1.4 3,-0.4 -3,-0.4 -1,-0.2 0.960 102.3 36.4 -57.9 -54.8 1.6 12.9 -7.4 11 11 A P H > S+ 0 0 84 0, 0.0 4,-0.6 0, 0.0 -1,-0.2 0.779 118.3 52.3 -69.8 -27.8 0.5 16.5 -6.8 12 12 A S H X S+ 0 0 61 -4,-0.8 4,-3.2 1,-0.2 5,-0.3 0.666 93.5 75.1 -82.0 -18.0 3.4 17.1 -4.5 13 13 A S H X S+ 0 0 64 -4,-1.5 4,-2.2 -3,-0.4 5,-0.2 0.952 100.9 39.3 -57.8 -52.7 5.9 15.8 -7.1 14 14 A P H > S+ 0 0 86 0, 0.0 4,-0.9 0, 0.0 -1,-0.2 0.748 118.1 51.1 -69.8 -24.5 5.7 19.0 -9.2 15 15 A A H X S+ 0 0 37 -4,-0.6 4,-1.7 2,-0.2 -2,-0.2 0.876 112.9 42.9 -80.3 -40.9 5.6 21.1 -6.0 16 16 A I H X S+ 0 0 112 -4,-3.2 4,-1.9 2,-0.2 -3,-0.2 0.887 117.4 46.1 -72.2 -40.4 8.6 19.6 -4.4 17 17 A L H X S+ 0 0 129 -4,-2.2 4,-0.9 -5,-0.3 -1,-0.2 0.808 116.1 46.7 -71.9 -30.2 10.6 19.5 -7.6 18 18 A G H X S+ 0 0 40 -4,-0.9 4,-1.1 -5,-0.2 -2,-0.2 0.801 114.0 46.4 -81.4 -30.3 9.6 23.1 -8.4 19 19 A K H X S+ 0 0 125 -4,-1.7 4,-1.9 2,-0.2 -2,-0.2 0.815 108.1 56.2 -80.1 -32.6 10.4 24.4 -4.9 20 20 A A H X S+ 0 0 47 -4,-1.9 4,-1.6 2,-0.2 -1,-0.2 0.834 107.1 50.2 -67.7 -33.2 13.7 22.6 -4.7 21 21 A A H X S+ 0 0 60 -4,-0.9 4,-1.1 2,-0.2 -1,-0.2 0.887 116.6 39.4 -72.2 -40.5 14.9 24.4 -7.9 22 22 A T H X S+ 0 0 80 -4,-1.1 4,-1.4 2,-0.2 -2,-0.2 0.727 113.4 57.0 -80.8 -23.3 13.9 27.8 -6.6 23 23 A D H X S+ 0 0 101 -4,-1.9 4,-2.0 2,-0.2 -2,-0.2 0.871 107.6 46.3 -74.6 -38.5 15.1 27.1 -3.1 24 24 A V H X S+ 0 0 99 -4,-1.6 4,-0.6 2,-0.2 -2,-0.2 0.848 112.0 51.4 -72.0 -35.1 18.6 26.3 -4.3 25 25 A V H < S+ 0 0 111 -4,-1.1 3,-0.3 1,-0.2 -2,-0.2 0.863 115.9 40.7 -69.8 -36.9 18.8 29.4 -6.5 26 26 A A H >< S+ 0 0 50 -4,-1.4 3,-2.1 1,-0.2 4,-0.5 0.816 103.5 67.2 -80.2 -32.9 17.7 31.6 -3.6 27 27 A A H >< S+ 0 0 55 -4,-2.0 3,-0.8 1,-0.3 -1,-0.2 0.716 82.5 78.8 -59.9 -20.0 19.8 29.8 -1.0 28 28 A W T 3< S+ 0 0 235 -4,-0.6 -1,-0.3 -3,-0.3 -2,-0.2 0.774 87.3 57.9 -59.9 -26.0 22.8 31.2 -3.0 29 29 A K T < 0 0 176 -3,-2.1 -1,-0.3 -4,-0.1 -2,-0.2 0.826 360.0 360.0 -73.6 -32.6 22.2 34.5 -1.2 30 30 A S < 0 0 136 -3,-0.8 -2,-0.1 -4,-0.5 -3,-0.1 0.914 360.0 360.0 -70.0 360.0 22.6 32.8 2.2