==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-AUG-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE INHIBITOR 19-MAR-12 2LQX . COMPND 2 MOLECULE: TRYPSIN INHIBITOR BWI-2C; . SOURCE 2 ORGANISM_SCIENTIFIC: FAGOPYRUM ESCULENTUM; . AUTHOR K.S.MINEEV,A.A.VASSILEVSKI,P.B.OPARIN,E.V.GRISHIN,T.A.EGOROV . 41 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4437.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 65.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 12.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 51.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 141 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 179.9 2.1 0.0 -1.2 2 2 A E + 0 0 190 2,-0.0 0, 0.0 3,-0.0 0, 0.0 0.630 360.0 81.2-121.0 -33.9 5.1 -2.0 -2.3 3 3 A K S S- 0 0 114 1,-0.1 2,-2.5 2,-0.0 3,-0.2 -0.325 99.0 -89.4 -75.2 159.2 7.5 0.6 -3.7 4 4 A P > + 0 0 89 0, 0.0 3,-1.2 0, 0.0 4,-0.4 -0.404 57.3 160.5 -69.7 73.7 9.8 2.7 -1.4 5 5 A Q T 3> + 0 0 69 -2,-2.5 4,-1.8 1,-0.3 3,-0.3 0.609 55.5 89.5 -71.3 -11.1 7.2 5.5 -0.9 6 6 A Q H 3> S+ 0 0 149 1,-0.3 4,-0.6 2,-0.2 -1,-0.3 0.822 86.7 50.6 -54.9 -32.2 9.2 6.5 2.2 7 7 A E H X> S+ 0 0 107 -3,-1.2 4,-2.1 2,-0.2 3,-0.6 0.859 102.5 59.6 -74.4 -37.0 11.3 8.7 -0.1 8 8 A L H 3> S+ 0 0 21 -4,-0.4 4,-2.9 -3,-0.3 5,-0.3 0.925 97.6 58.8 -57.1 -47.4 8.2 10.4 -1.6 9 9 A E H 3X S+ 0 0 102 -4,-1.8 4,-2.2 1,-0.2 -1,-0.2 0.837 108.5 47.6 -51.5 -35.0 7.1 11.7 1.8 10 10 A E H < S+ 0 0 73 -4,-2.3 3,-0.8 2,-0.2 -1,-0.2 0.922 105.9 53.5 -69.0 -45.7 10.3 19.5 1.3 15 15 A b H >< S+ 0 0 3 -4,-1.8 3,-1.4 1,-0.3 -2,-0.2 0.887 108.2 50.7 -56.6 -41.1 8.3 21.1 -1.5 16 16 A R H 3< S+ 0 0 126 -4,-2.2 -1,-0.3 1,-0.3 -2,-0.2 0.723 104.2 59.4 -69.9 -21.1 5.8 22.3 1.1 17 17 A M T << S+ 0 0 161 -3,-0.8 -1,-0.3 -4,-0.7 -2,-0.2 0.348 84.1 116.3 -88.1 5.7 8.7 23.8 3.1 18 18 A K < - 0 0 91 -3,-1.4 7,-0.1 -4,-0.1 -3,-0.0 -0.394 69.7-133.8 -74.8 152.7 9.5 25.9 0.1 19 19 A R S S+ 0 0 227 -2,-0.1 2,-0.2 5,-0.0 -1,-0.1 -0.025 73.3 105.0 -95.6 29.8 9.4 29.7 0.3 20 20 A W S S- 0 0 169 1,-0.2 5,-0.1 2,-0.1 -2,-0.0 -0.564 80.1 -79.0-105.3 171.1 7.5 29.9 -3.1 21 21 A S >> - 0 0 75 -2,-0.2 4,-2.0 1,-0.1 3,-0.7 -0.154 49.0 -98.9 -64.3 162.6 3.9 30.6 -3.9 22 22 A T H 3> S+ 0 0 114 1,-0.3 4,-2.4 2,-0.2 5,-0.1 0.829 124.9 60.0 -51.6 -34.1 1.2 27.8 -3.6 23 23 A E H 3> S+ 0 0 140 2,-0.2 4,-2.3 1,-0.2 -1,-0.3 0.923 105.3 46.0 -61.4 -46.2 1.6 27.3 -7.4 24 24 A M H <> S+ 0 0 82 -3,-0.7 4,-2.0 1,-0.2 -1,-0.2 0.878 113.8 49.2 -64.8 -38.6 5.3 26.5 -7.0 25 25 A V H X S+ 0 0 22 -4,-2.0 4,-2.0 2,-0.2 -1,-0.2 0.853 110.3 51.9 -69.2 -35.5 4.6 24.1 -4.1 26 26 A H H X S+ 0 0 112 -4,-2.4 4,-2.6 -5,-0.2 5,-0.3 0.968 111.1 44.5 -65.2 -55.3 1.8 22.4 -6.0 27 27 A R H X S+ 0 0 141 -4,-2.3 4,-2.5 1,-0.2 -2,-0.2 0.917 111.4 55.1 -55.6 -46.6 3.9 21.7 -9.1 28 28 A b H X S+ 0 0 36 -4,-2.0 4,-2.5 -5,-0.2 5,-0.2 0.940 110.8 44.2 -52.4 -53.3 6.8 20.5 -7.0 29 29 A E H X S+ 0 0 41 -4,-2.0 4,-1.7 1,-0.2 -2,-0.2 0.961 113.9 48.5 -57.4 -55.7 4.7 18.0 -5.2 30 30 A K H X S+ 0 0 139 -4,-2.6 4,-1.9 1,-0.2 -1,-0.2 0.830 111.7 53.4 -54.5 -33.3 3.0 16.7 -8.3 31 31 A K H X S+ 0 0 114 -4,-2.5 4,-3.3 -5,-0.3 5,-0.3 0.955 106.4 48.5 -67.6 -51.9 6.4 16.4 -9.9 32 32 A a H < S+ 0 0 18 -4,-2.5 4,-0.4 1,-0.2 -1,-0.2 0.771 111.4 54.4 -59.7 -25.6 7.9 14.3 -7.1 33 33 A E H X S+ 0 0 97 -4,-1.7 4,-0.9 -5,-0.2 -1,-0.2 0.909 114.2 37.3 -75.0 -44.4 4.8 12.1 -7.4 34 34 A E H < S+ 0 0 125 -4,-1.9 3,-0.3 1,-0.2 -2,-0.2 0.875 113.3 56.5 -74.9 -39.1 5.2 11.5 -11.2 35 35 A K T < S+ 0 0 163 -4,-3.3 -1,-0.2 1,-0.2 -2,-0.2 0.660 102.2 60.7 -66.6 -15.0 9.0 11.3 -11.0 36 36 A F T 4 S+ 0 0 69 -4,-0.4 -1,-0.2 -5,-0.3 -2,-0.2 0.888 84.4 87.3 -78.8 -42.2 8.5 8.5 -8.5 37 37 A E S < S- 0 0 149 -4,-0.9 3,-0.3 -3,-0.3 -4,-0.0 -0.375 84.7-118.1 -62.2 131.7 6.6 6.2 -10.8 38 38 A R S S+ 0 0 188 1,-0.2 -1,-0.1 -2,-0.1 -2,-0.1 -0.109 93.9 42.1 -64.9 167.7 8.9 4.0 -12.8 39 39 A Q + 0 0 167 1,-0.1 -1,-0.2 2,-0.1 -2,-0.1 0.839 69.3 139.5 61.7 33.6 9.1 4.1 -16.6 40 40 A Q 0 0 104 -3,-0.3 -1,-0.1 1,-0.2 -2,-0.1 0.271 360.0 360.0 -89.9 10.7 8.9 7.9 -16.4 41 41 A R 0 0 256 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 -0.836 360.0 360.0-146.4 360.0 11.5 8.1 -19.2