==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUN-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 22-MAR-12 2LR5 . COMPND 2 MOLECULE: MICASIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.J.HARVEY,D.J.CRAIK,S.ZHU . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2834.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 68.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 23.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 5 0, 0.0 5,-0.3 0, 0.0 32,-0.2 0.000 360.0 360.0 360.0-166.2 -7.5 -1.5 -1.7 2 2 A F + 0 0 71 30,-1.9 5,-0.2 24,-0.3 31,-0.1 0.964 360.0 19.3 -63.5 -53.4 -6.8 0.7 1.4 3 3 A G S >> S+ 0 0 0 29,-0.3 4,-2.7 3,-0.1 3,-0.9 0.932 105.9 82.5 -80.0 -87.2 -4.8 3.2 -0.6 4 4 A a T 34 S+ 0 0 19 1,-0.3 -1,-0.0 3,-0.3 20,-0.0 -0.278 90.3 18.6 -65.6 151.9 -5.6 3.1 -4.3 5 5 A P T 34 S+ 0 0 116 0, 0.0 -1,-0.3 0, 0.0 3,-0.3 -0.989 135.5 40.8 -85.3 3.1 -7.6 4.1 -6.1 6 6 A F T <4 S- 0 0 150 -3,-0.9 2,-0.3 -5,-0.3 -2,-0.3 0.994 138.1 -4.2 -68.5 -65.9 -8.4 6.6 -3.4 7 7 A N X + 0 0 80 -4,-2.7 4,-2.3 -5,-0.2 -3,-0.3 -0.689 64.4 162.8-135.8 82.4 -5.0 7.6 -2.1 8 8 A E H > S+ 0 0 63 -5,-0.3 4,-3.9 -2,-0.3 5,-0.3 0.927 80.2 58.1 -63.3 -44.2 -2.2 5.6 -3.8 9 9 A N H > S+ 0 0 129 2,-0.2 4,-2.9 1,-0.2 5,-0.2 0.867 108.8 46.3 -53.9 -40.6 0.4 8.1 -2.6 10 10 A E H > S+ 0 0 65 2,-0.2 4,-3.7 3,-0.2 5,-0.2 0.984 116.0 42.5 -67.2 -57.4 -0.7 7.5 1.0 11 11 A b H X S+ 0 0 0 -4,-2.3 4,-2.9 1,-0.2 5,-0.3 0.908 118.3 48.4 -54.9 -44.1 -0.7 3.7 0.7 12 12 A H H X S+ 0 0 57 -4,-3.9 4,-2.7 2,-0.2 -1,-0.2 0.963 116.2 40.4 -60.9 -55.6 2.5 3.9 -1.2 13 13 A A H X S+ 0 0 50 -4,-2.9 4,-1.4 -5,-0.3 -2,-0.2 0.879 115.0 54.4 -62.9 -38.5 4.3 6.3 1.2 14 14 A H H >X S+ 0 0 100 -4,-3.7 4,-0.7 -5,-0.2 3,-0.7 0.964 112.0 42.0 -58.9 -54.6 2.8 4.4 4.1 15 15 A c H ><>S+ 0 0 3 -4,-2.9 3,-1.2 1,-0.3 5,-0.8 0.901 112.2 56.0 -59.4 -40.4 4.2 1.1 3.0 16 16 A L H ><5S+ 0 0 58 -4,-2.7 3,-0.7 1,-0.3 -1,-0.3 0.776 102.8 57.3 -63.1 -26.3 7.4 2.8 2.1 17 17 A S H <<5S+ 0 0 98 -4,-1.4 -1,-0.3 -3,-0.7 -2,-0.2 0.680 94.2 65.6 -80.4 -18.1 7.6 4.0 5.6 18 18 A I T <<5S- 0 0 83 -3,-1.2 -1,-0.2 -4,-0.7 -2,-0.1 -0.007 129.0 -87.7 -95.2 31.1 7.5 0.5 7.1 19 19 A G T < 5S+ 0 0 57 -3,-0.7 -3,-0.1 1,-0.3 -2,-0.1 -0.130 95.9 120.2 95.3 -36.7 10.8 -0.4 5.6 20 20 A R < - 0 0 76 -5,-0.8 -1,-0.3 1,-0.1 -2,-0.1 -0.185 50.5-157.6 -61.3 150.1 9.4 -1.6 2.3 21 21 A K S S+ 0 0 126 1,-0.2 2,-0.3 -3,-0.1 -5,-0.1 0.584 74.4 23.6-105.5 -15.2 10.5 0.2 -0.8 22 22 A F + 0 0 147 -7,-0.1 14,-2.5 2,-0.0 15,-0.5 -0.968 66.3 131.8-146.2 161.2 7.5 -0.6 -3.0 23 23 A G E -A 35 0A 5 12,-0.3 12,-0.3 -2,-0.3 2,-0.2 -0.812 23.6-157.2 161.8 156.0 3.9 -1.6 -2.6 24 24 A F E -A 34 0A 122 10,-2.5 10,-2.0 -2,-0.2 2,-0.3 -0.651 46.1 -59.4-135.5-169.2 0.4 -1.0 -3.7 25 25 A a E -A 33 0A 20 8,-0.3 2,-0.5 -2,-0.2 8,-0.3 -0.612 46.8-136.5 -84.3 141.8 -3.1 -1.5 -2.3 26 26 A A E > -A 32 0A 23 6,-2.2 6,-1.0 -2,-0.3 5,-0.6 -0.845 63.2 -5.2-102.1 126.7 -4.2 -5.1 -1.4 27 27 A G T 5S- 0 0 48 -2,-0.5 7,-0.1 -26,-0.1 4,-0.1 0.062 83.1 -87.0 81.4 165.0 -7.7 -6.3 -2.4 28 28 A P T 5S+ 0 0 120 0, 0.0 -1,-0.1 0, 0.0 -3,-0.0 0.922 107.3 64.8 -74.8 -44.5 -10.6 -4.3 -3.9 29 29 A L T 5S- 0 0 138 1,-0.1 2,-2.4 -27,-0.0 3,-0.3 -0.224 106.7 -89.5 -75.4 166.4 -12.0 -3.1 -0.6 30 30 A R T 5S+ 0 0 136 1,-0.2 -28,-0.2 -28,-0.1 -1,-0.1 -0.431 86.0 120.2 -77.5 67.8 -10.2 -0.7 1.7 31 31 A A S -A 23 0A 21 -2,-0.9 3,-1.6 -12,-0.3 -12,-0.3 -0.499 25.3-121.5 -79.4 149.7 4.0 -4.3 -0.2 36 36 A G T 3 S+ 0 0 41 -14,-2.5 -13,-0.2 1,-0.3 -1,-0.1 0.684 114.7 34.8 -62.9 -21.1 6.7 -5.7 -2.6 37 37 A K T 3 0 0 168 1,-0.5 -1,-0.3 -15,-0.5 -14,-0.1 -0.203 360.0 360.0-127.0 41.9 8.5 -7.3 0.3 38 38 A Q < 0 0 194 -3,-1.6 -1,-0.5 -18,-0.0 -18,-0.1 -0.265 360.0 360.0 58.9 360.0 5.5 -8.3 2.5