==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 27-MAR-12 2LR7 . COMPND 2 MOLECULE: CATHELICIDIN-PY; . SOURCE 2 ORGANISM_SCIENTIFIC: RANA CATESBEIANA; . AUTHOR J.YANG . 29 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2417.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 221 0, 0.0 8,-0.1 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 121.6 -7.7 -1.7 5.3 2 2 A K - 0 0 163 0, 0.0 7,-0.1 0, 0.0 6,-0.0 -0.008 360.0 -9.3 177.6 -45.5 -10.4 -0.5 2.9 3 3 A a S S- 0 0 62 1,-0.3 2,-0.3 0, 0.0 3,-0.0 0.491 97.1 -71.0-138.2 -79.4 -10.2 -2.7 -0.2 4 4 A N > - 0 0 72 1,-0.1 4,-1.5 -3,-0.0 5,-0.3 -0.907 68.4 -29.8-171.4-169.6 -7.4 -5.2 -0.8 5 5 A F T 4 S+ 0 0 125 -2,-0.3 6,-0.2 1,-0.2 -1,-0.1 -0.243 121.6 26.5 -60.1 154.5 -3.8 -5.6 -1.7 6 6 A L T 4 S+ 0 0 72 4,-1.7 -1,-0.2 1,-0.1 5,-0.2 0.946 120.7 61.4 53.2 53.1 -2.2 -2.9 -3.8 7 7 A a T 4 S- 0 0 33 -3,-0.3 -2,-0.2 10,-0.1 -1,-0.1 0.205 131.8 -25.0-170.0 -52.0 -4.7 -0.4 -2.5 8 8 A K S < S+ 0 0 46 -4,-1.5 -3,-0.2 10,-0.1 10,-0.1 0.057 133.3 44.1-168.1 33.1 -4.4 -0.1 1.3 9 9 A L S S+ 0 0 70 -5,-0.3 13,-2.9 9,-0.1 2,-1.4 0.195 117.9 19.8-140.4 -93.3 -2.8 -3.4 2.3 10 10 A K S S- 0 0 99 11,-0.2 -4,-1.7 12,-0.1 8,-0.0 -0.701 93.4-164.4 -89.5 85.4 0.1 -4.8 0.3 11 11 A E - 0 0 0 -2,-1.4 12,-0.3 -5,-0.2 8,-0.1 0.291 26.2-163.8 -69.7-170.9 1.0 -1.5 -1.3 12 12 A K - 0 0 69 6,-0.9 2,-0.2 15,-0.6 17,-0.2 0.436 59.3 -44.3-138.5 -80.0 3.1 -0.5 -4.3 13 13 A L S S+ 0 0 64 5,-0.2 15,-0.3 15,-0.1 16,-0.2 -0.741 84.0 98.7-168.1 118.6 4.1 3.1 -4.6 14 14 A R S S- 0 0 139 13,-0.4 14,-0.1 -2,-0.2 5,-0.1 -0.142 74.0 -75.7-160.2 -93.4 1.9 6.2 -4.0 15 15 A T S S- 0 0 75 12,-0.2 -1,-0.1 -2,-0.0 13,-0.1 0.280 79.0 -40.8-153.9 -75.8 1.6 8.4 -0.9 16 16 A V S S+ 0 0 91 11,-0.1 -2,-0.0 12,-0.0 12,-0.0 0.558 124.2 42.7-138.6 -57.1 -0.3 7.5 2.3 17 17 A I S > S+ 0 0 64 1,-0.2 3,-0.6 2,-0.1 4,-0.2 0.947 130.4 30.0 -67.4 -46.3 -3.6 5.7 1.8 18 18 A T T 3 S+ 0 0 31 1,-0.3 -6,-0.9 2,-0.1 -1,-0.2 0.337 122.4 55.1 -92.7 2.0 -2.2 3.4 -0.9 19 19 A S T 3 S+ 0 0 16 -8,-0.1 -1,-0.3 -6,-0.1 9,-0.2 -0.344 81.7 110.7-117.7 47.3 1.1 3.7 0.8 20 20 A H S < S- 0 0 96 -3,-0.6 -2,-0.1 7,-0.2 -3,-0.1 0.963 88.3 -8.9 -90.0 -62.6 -0.2 2.5 4.1 21 21 A I S S+ 0 0 108 -12,-0.3 -11,-0.2 -4,-0.2 -3,-0.1 0.871 76.1 175.0-104.2 -67.5 1.1 -1.0 5.0 22 22 A D - 0 0 8 -13,-2.9 -10,-0.1 1,-0.2 -12,-0.1 0.116 59.5 -71.2 76.9 165.2 3.0 -2.6 2.1 23 23 A K S S- 0 0 105 -12,-0.3 -1,-0.2 3,-0.2 -13,-0.1 0.898 83.9 -96.3 -52.8 -40.2 4.9 -5.9 2.0 24 24 A V S S+ 0 0 118 -13,-0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.024 109.1 77.4 148.6 -24.8 7.4 -3.9 4.2 25 25 A L S S- 0 0 137 1,-0.2 -3,-0.1 2,-0.1 0, 0.0 0.934 108.0 -4.0 -79.7 -49.2 10.1 -2.6 1.8 26 26 A R + 0 0 99 1,-0.1 -1,-0.2 -15,-0.1 -3,-0.2 -0.706 51.4 163.6-157.4 92.9 8.4 0.3 -0.0 27 27 A P S S+ 0 0 39 0, 0.0 -15,-0.6 0, 0.0 -13,-0.4 0.887 94.9 32.5 -74.6 -42.0 4.8 1.6 0.4 28 28 A Q 0 0 123 1,-0.3 -15,-0.1 -15,-0.3 -9,-0.1 0.547 360.0 360.0 -92.9 -8.6 5.5 4.9 -1.2 29 29 A G 0 0 72 -16,-0.2 -1,-0.3 -17,-0.2 -16,-0.1 -0.223 360.0 360.0 121.7 360.0 8.0 3.5 -3.5