==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 28-MAR-12 2LRD . COMPND 2 MOLECULE: ACANTHAPORIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ACANTHAMOEBA CULBERTSONI; . AUTHOR M.MICHALEK,F.D.SOENNICHSEN,R.WECHSELBERGER,A.J.DINGLEY,H.WIE . 61 1 5 5 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3655.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 68.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 18.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 37.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 75 0, 0.0 47,-0.1 0, 0.0 48,-0.1 0.000 360.0 360.0 360.0 142.9 0.2 -0.9 0.4 2 2 A M + 0 0 107 1,-0.1 3,-0.1 46,-0.1 46,-0.1 0.964 360.0 178.0 -57.2 -56.8 -1.4 1.4 -2.1 3 3 A G - 0 0 37 1,-0.2 2,-0.7 41,-0.1 39,-0.2 -0.342 55.6 -38.0 87.4-168.6 -4.9 0.5 -1.2 4 4 A K S S+ 0 0 131 37,-3.0 2,-0.3 35,-0.2 -1,-0.2 -0.200 119.3 94.4 -84.1 37.0 -8.2 1.8 -2.5 5 5 A a - 0 0 0 -2,-0.7 -1,-0.1 36,-0.2 5,-0.1 -0.805 60.5-167.5-137.7 91.9 -6.3 5.0 -2.6 6 6 A S > - 0 0 70 -2,-0.3 4,-0.6 1,-0.1 5,-0.2 0.005 49.2 -77.8 -68.9-176.5 -4.6 6.0 -5.9 7 7 A V T 4 S+ 0 0 120 1,-0.2 3,-0.4 2,-0.2 4,-0.2 0.895 135.0 39.3 -51.8 -46.2 -2.0 8.7 -6.2 8 8 A L T >> S+ 0 0 123 1,-0.2 3,-1.5 2,-0.2 4,-0.5 0.924 118.6 46.2 -71.8 -45.4 -4.6 11.5 -6.1 9 9 A K H 3> S+ 0 0 119 1,-0.3 4,-0.7 2,-0.2 -1,-0.2 0.428 97.6 74.6 -79.7 7.3 -6.8 9.7 -3.5 10 10 A K H 3< S+ 0 0 79 -4,-0.6 4,-0.3 -3,-0.4 -1,-0.3 0.614 97.9 47.8 -87.3 -14.6 -3.6 9.2 -1.6 11 11 A V H <4 S+ 0 0 113 -3,-1.5 -2,-0.2 -4,-0.2 -1,-0.2 0.644 113.1 48.8 -92.4 -23.9 -3.9 12.8 -0.8 12 12 A A H >X S+ 0 0 32 -4,-0.5 4,-2.2 2,-0.2 3,-0.7 0.578 92.2 74.2 -93.4 -14.9 -7.5 12.3 0.1 13 13 A b H 3X S+ 0 0 9 -4,-0.7 4,-3.4 1,-0.3 5,-0.4 0.864 89.8 61.5 -68.4 -30.4 -7.0 9.3 2.4 14 14 A A H 34 S+ 0 0 69 -4,-0.3 4,-0.5 1,-0.2 -1,-0.3 0.782 110.1 41.2 -62.8 -25.5 -5.6 11.7 5.0 15 15 A A H <> S+ 0 0 72 -3,-0.7 4,-0.9 2,-0.2 -2,-0.2 0.803 113.4 53.6 -88.4 -35.6 -9.1 13.2 4.8 16 16 A A H < S+ 0 0 48 -4,-2.2 3,-0.5 1,-0.2 4,-0.2 0.947 118.8 33.3 -64.0 -51.4 -10.8 9.9 4.7 17 17 A I T >X S+ 0 0 8 -4,-3.4 3,-2.1 1,-0.2 4,-2.0 0.758 101.9 81.6 -77.8 -23.5 -9.1 8.6 7.8 18 18 A A H 3> S+ 0 0 40 -4,-0.5 4,-2.6 -5,-0.4 -1,-0.2 0.856 87.8 55.7 -47.7 -41.5 -9.0 12.1 9.3 19 19 A G H 3< S+ 0 0 54 -4,-0.9 -1,-0.3 -3,-0.5 4,-0.3 0.746 108.1 49.9 -66.0 -22.1 -12.7 11.6 10.5 20 20 A A H <> S+ 0 0 4 -3,-2.1 4,-0.6 -4,-0.2 3,-0.3 0.872 111.7 44.2 -84.1 -40.6 -11.6 8.5 12.3 21 21 A V H >X>S+ 0 0 22 -4,-2.0 4,-3.8 1,-0.2 3,-1.6 0.905 109.6 57.8 -69.0 -38.0 -8.7 9.9 14.1 22 22 A A H 3<5S+ 0 0 81 -4,-2.6 -1,-0.2 -5,-0.3 -2,-0.2 0.742 100.0 59.9 -60.6 -23.3 -10.8 12.9 14.9 23 23 A A H 345S+ 0 0 80 -3,-0.3 -1,-0.3 -4,-0.3 -2,-0.2 0.724 122.4 20.6 -77.0 -23.3 -13.1 10.3 16.5 24 24 A c H <<5S- 0 0 57 -3,-1.6 -2,-0.2 -4,-0.6 -3,-0.1 0.783 118.2 -89.8-110.6 -51.4 -10.3 9.3 18.9 25 25 A G T <5S- 0 0 69 -4,-3.8 -3,-0.2 1,-0.5 2,-0.1 0.532 82.2 -26.3 135.1 58.3 -7.8 12.2 19.1 26 26 A G S > - 0 0 75 -2,-2.2 4,-2.8 1,-0.2 3,-1.9 -0.809 25.1-166.2-105.6 79.3 -4.5 6.3 17.1 29 29 A L H 3> S+ 0 0 21 -2,-1.0 4,-1.9 1,-0.3 -1,-0.2 0.833 83.2 46.7 -42.7 -47.1 -4.2 3.6 14.5 30 30 A P H 34 S+ 0 0 69 0, 0.0 4,-0.3 0, 0.0 -1,-0.3 0.743 119.6 45.1 -68.3 -19.1 -6.0 0.9 16.6 31 31 A c H X> S+ 0 0 48 -3,-1.9 3,-0.7 2,-0.1 4,-0.7 0.910 114.1 42.5 -86.9 -53.2 -8.7 3.5 17.3 32 32 A V H >X S+ 0 0 0 -4,-2.8 4,-4.2 1,-0.2 3,-0.8 0.845 105.3 65.8 -65.4 -34.6 -9.2 5.2 13.9 33 33 A L H 3X S+ 0 0 17 -4,-1.9 4,-1.3 -5,-0.4 -1,-0.2 0.810 93.8 60.3 -58.4 -30.9 -9.2 1.8 12.1 34 34 A A H <4 S+ 0 0 86 -3,-0.7 -1,-0.2 -4,-0.3 -2,-0.2 0.870 120.8 24.8 -64.7 -37.0 -12.4 0.8 14.0 35 35 A A H X< S+ 0 0 55 -3,-0.8 3,-1.5 -4,-0.7 -2,-0.2 0.832 122.0 54.1 -93.7 -41.5 -14.2 3.8 12.4 36 36 A L H >< S+ 0 0 5 -4,-4.2 3,-2.4 1,-0.3 6,-0.3 0.666 85.8 83.7 -67.0 -19.5 -12.1 4.2 9.3 37 37 A K T 3< S+ 0 0 109 -4,-1.3 3,-0.4 -5,-0.3 -1,-0.3 0.757 74.6 73.3 -60.9 -17.1 -12.6 0.6 8.4 38 38 A A T < S+ 0 0 91 -3,-1.5 2,-1.5 1,-0.3 -1,-0.3 0.849 87.0 65.9 -61.6 -28.5 -15.9 1.8 6.8 39 39 A A S X> S- 0 0 25 -3,-2.4 3,-3.2 -4,-0.2 4,-0.9 -0.408 88.4-165.0 -87.2 54.0 -13.5 3.1 4.2 40 40 A E T 34 S+ 0 0 141 -2,-1.5 -3,-0.1 -3,-0.4 -2,-0.1 -0.238 73.9 19.6 -48.8 101.1 -12.6 -0.4 3.3 41 41 A G T 34 S+ 0 0 23 -2,-0.4 -37,-3.0 -38,-0.1 -1,-0.3 0.101 111.3 69.1 123.0 -21.4 -9.4 0.1 1.3 42 42 A a T <> S+ 0 0 10 -3,-3.2 4,-1.3 -6,-0.3 3,-0.3 0.494 84.9 72.3-106.5 1.2 -8.3 3.6 2.3 43 43 A A H X S+ 0 0 2 -4,-0.9 4,-3.1 1,-0.2 5,-0.2 0.827 89.2 62.9 -74.4 -30.6 -7.4 2.3 5.7 44 44 A S H 4 S+ 0 0 24 1,-0.2 4,-0.3 2,-0.2 -1,-0.2 0.751 100.4 52.0 -63.1 -24.4 -4.6 0.7 3.8 45 45 A b H > S+ 0 0 12 -3,-0.3 4,-0.6 2,-0.2 3,-0.3 0.875 110.1 49.1 -77.5 -39.6 -3.5 4.3 3.1 46 46 A F H X S+ 0 0 8 -4,-1.3 4,-0.6 1,-0.2 3,-0.5 0.961 116.0 39.5 -62.9 -57.7 -3.7 5.0 6.8 47 47 A d H < S+ 0 0 1 -4,-3.1 -1,-0.2 1,-0.2 -2,-0.2 0.469 94.1 90.6 -74.9 -2.1 -1.6 2.0 7.9 48 48 A E H >4 S+ 0 0 68 -3,-0.3 3,-0.7 -4,-0.3 -1,-0.2 0.972 100.8 25.9 -58.2 -56.7 0.8 2.3 5.0 49 49 A D H 3< S+ 0 0 141 -4,-0.6 -1,-0.2 -3,-0.5 -2,-0.2 0.670 120.7 60.7 -80.0 -17.9 3.2 4.6 6.8 50 50 A H T 3< + 0 0 34 -4,-0.6 2,-1.9 2,-0.1 -1,-0.2 -0.136 68.6 145.8 -99.1 34.2 2.1 3.1 10.1 51 51 A e < + 0 0 70 -3,-0.7 2,-0.2 4,-0.1 4,-0.1 -0.532 42.7 77.4 -77.7 81.7 3.2 -0.4 9.1 52 52 A H S > S- 0 0 112 -2,-1.9 4,-1.4 2,-0.4 5,-0.3 -0.685 91.5 -11.1-155.4-153.6 4.4 -1.7 12.5 53 53 A G H >> S+ 0 0 55 -2,-0.2 2,-0.9 2,-0.2 4,-0.9 0.748 132.9 30.0 -19.1 -77.6 3.1 -3.0 15.9 54 54 A V H 34 S+ 0 0 36 1,-0.2 -2,-0.4 2,-0.2 -1,-0.2 -0.838 108.5 64.3 -99.3 109.2 -0.4 -2.2 15.5 55 55 A d H 3>>S+ 0 0 0 -2,-0.9 5,-2.7 -4,-0.1 4,-1.0 -0.271 103.6 51.4 165.7 -33.9 -1.0 -2.4 11.8 56 56 A K H <<5S+ 0 0 144 -4,-1.4 -2,-0.2 -3,-0.8 -3,-0.1 0.800 118.8 37.5 -83.6 -32.9 -0.2 -6.0 12.1 57 57 A D T <5S+ 0 0 122 -4,-0.9 -3,-0.2 -5,-0.3 -1,-0.1 0.819 112.6 57.1 -82.7 -35.2 -2.8 -6.0 14.8 58 58 A L T 45S- 0 0 12 -5,-0.1 -2,-0.2 3,-0.1 -1,-0.2 0.840 111.5-131.2 -62.3 -33.2 -4.8 -3.5 12.8 59 59 A H T <5S+ 0 0 158 -4,-1.0 -3,-0.2 2,-0.2 -2,-0.1 0.885 75.0 101.5 81.1 48.9 -4.7 -6.2 10.1 60 60 A L < 0 0 51 -5,-2.7 -4,-0.1 1,-0.4 -16,-0.1 0.683 360.0 360.0-120.0 -62.4 -3.6 -4.2 7.1 61 61 A e 0 0 88 -6,-0.6 -1,-0.4 -9,-0.1 -2,-0.2 -0.665 360.0 360.0-103.6 360.0 0.1 -4.7 6.3