==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 22-MAY-02 1LU8 . COMPND 2 MOLECULE: VENOM TOXIN PEPTIDE MTX4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR H.J.JUNG,C.W.LEE,Y.E.EARM,J.I.KIM . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3095.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 38.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 20.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 123 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 142.5 -7.7 6.9 -2.8 2 2 A a - 0 0 62 1,-0.2 14,-0.2 15,-0.0 13,-0.0 -0.668 360.0 -96.3-129.3-173.9 -5.1 4.2 -1.9 3 3 A L - 0 0 37 12,-1.8 -1,-0.2 -2,-0.2 14,-0.2 0.177 52.2 -78.3 -85.7-149.9 -3.8 2.5 1.3 4 4 A E > - 0 0 101 4,-0.1 3,-0.7 12,-0.1 13,-0.3 -0.371 47.5 -89.8-104.3-172.6 -0.7 3.5 3.3 5 5 A F T 3 S+ 0 0 90 1,-0.2 27,-0.2 29,-0.2 17,-0.1 0.334 125.6 28.9 -82.1 11.9 3.0 2.9 2.6 6 6 A W T 3 S+ 0 0 99 25,-0.1 2,-0.2 2,-0.1 -1,-0.2 -0.018 85.7 129.9-161.2 43.5 2.8 -0.4 4.6 7 7 A W < - 0 0 136 -3,-0.7 23,-1.8 1,-0.2 8,-0.1 -0.686 69.7 -78.3-101.9 158.5 -0.8 -1.9 4.3 8 8 A K B +A 29 0A 170 -2,-0.2 7,-0.3 21,-0.2 2,-0.3 -0.048 63.3 171.5 -45.8 157.1 -1.6 -5.4 3.3 9 9 A b - 0 0 13 19,-1.5 5,-0.2 5,-0.1 -1,-0.1 -0.972 27.8-150.4-160.9 175.8 -1.4 -5.9 -0.5 10 10 A N >> - 0 0 90 -2,-0.3 3,-2.5 1,-0.1 4,-0.7 -0.872 19.9-141.6-160.9 123.9 -1.4 -8.4 -3.4 11 11 A P T 34 S+ 0 0 100 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 0.673 112.0 49.2 -60.8 -13.1 0.3 -8.2 -6.8 12 12 A N T 34 S+ 0 0 144 1,-0.1 -3,-0.0 -3,-0.0 0, 0.0 0.417 138.4 0.5-104.4 0.2 -2.9 -9.7 -8.1 13 13 A D T <4 S+ 0 0 138 -3,-2.5 -1,-0.1 0, 0.0 2,-0.1 0.026 85.4 150.1 179.3 55.7 -5.1 -7.2 -6.4 14 14 A D < - 0 0 33 -4,-0.7 -5,-0.1 -5,-0.2 -6,-0.1 -0.343 24.2-171.5 -90.8 177.6 -3.2 -4.6 -4.3 15 15 A K + 0 0 134 -7,-0.3 -12,-1.8 -8,-0.1 3,-0.1 0.240 31.2 140.4-153.7 13.6 -4.3 -1.0 -3.6 16 16 A c S S- 0 0 2 -14,-0.2 5,-0.1 1,-0.1 -11,-0.1 -0.331 70.2 -81.9 -62.8 145.7 -1.3 0.8 -1.9 17 17 A a - 0 0 21 -13,-0.3 4,-0.3 -14,-0.2 3,-0.3 -0.062 37.7-144.9 -43.5 147.6 -0.8 4.3 -3.1 18 18 A R S S+ 0 0 152 1,-0.2 -1,-0.1 2,-0.1 -2,-0.1 0.121 73.3 100.6-109.1 25.6 1.1 4.3 -6.5 19 19 A P S S- 0 0 100 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.748 116.5 -30.3 -78.6 -22.1 3.2 7.5 -6.0 20 20 A K S S+ 0 0 132 -3,-0.3 13,-1.1 13,-0.0 14,-0.5 0.202 111.7 93.8 174.0 43.2 6.2 5.4 -5.0 21 21 A L E -B 32 0A 18 -4,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.910 39.2-172.0-140.4 169.9 5.3 2.1 -3.3 22 22 A K E -B 31 0A 95 9,-1.0 9,-3.0 -2,-0.3 7,-0.1 -0.954 39.8 -84.9-162.7 141.4 4.6 -1.6 -4.2 23 23 A b E -B 30 0A 23 7,-0.3 2,-0.4 -2,-0.3 7,-0.3 -0.017 43.7-150.3 -43.1 152.7 3.3 -4.7 -2.4 24 24 A S E >>> -B 29 0A 20 5,-2.4 4,-1.5 1,-0.1 5,-1.4 -0.958 17.9-159.7-136.4 119.6 6.1 -6.5 -0.5 25 25 A K T 345S+ 0 0 182 -2,-0.4 -1,-0.1 1,-0.2 5,-0.1 0.806 82.6 86.7 -66.3 -26.5 6.1 -10.3 0.1 26 26 A L T 345S- 0 0 126 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.861 123.5 -7.6 -42.4 -37.1 8.6 -9.7 3.0 27 27 A F T <45S- 0 0 130 -3,-1.2 -1,-0.2 2,-0.3 -2,-0.2 0.269 99.7-102.8-144.9 10.1 5.5 -9.1 5.2 28 28 A K T <5S+ 0 0 147 -4,-1.5 -19,-1.5 1,-0.3 2,-0.3 0.786 89.2 111.4 71.1 23.9 2.5 -9.1 2.7 29 29 A L E