==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 23-MAY-02 1LUP . COMPND 2 MOLECULE: GSMTX2; . SOURCE 2 ORGANISM_SCIENTIFIC: GRAMMOSTOLA ROSEA; . AUTHOR R.E.OSWALD,T.M.SUCHYNA,R.MCFEETERS,P.GOTTLIEB,F.SACHS . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3181.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 8 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 170 0, 0.0 16,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0-161.3 7.3 7.8 3.1 2 2 A a + 0 0 52 14,-0.1 12,-0.1 15,-0.1 15,-0.0 -0.762 360.0 177.4 178.0 134.2 5.0 7.3 0.1 3 3 A Q - 0 0 90 -2,-0.2 3,-0.1 13,-0.0 -1,-0.0 0.785 63.5 -75.6-105.1 -75.8 5.2 6.0 -3.4 4 4 A K S S- 0 0 170 12,-0.1 -2,-0.0 0, 0.0 10,-0.0 0.117 70.6 -76.1 170.4 54.6 1.8 6.0 -5.1 5 5 A W S S+ 0 0 78 1,-0.1 21,-0.1 21,-0.1 3,-0.1 0.390 115.7 40.9 56.7 158.6 -0.5 3.2 -3.9 6 6 A M S S+ 0 0 90 19,-1.3 2,-0.2 1,-0.2 -1,-0.1 0.764 84.4 159.8 40.8 32.1 -0.2 -0.4 -5.0 7 7 A W - 0 0 71 1,-0.1 18,-1.1 17,-0.1 -1,-0.2 -0.588 53.0 -79.6 -84.8 145.2 3.6 0.1 -4.7 8 8 A T B -A 24 0A 87 -2,-0.2 2,-0.3 16,-0.2 16,-0.2 -0.111 48.9-135.7 -44.1 127.7 5.9 -2.9 -4.3 9 9 A b + 0 0 28 14,-1.5 2,-0.3 4,-0.1 -1,-0.1 -0.697 39.4 139.2 -91.8 141.6 5.9 -4.2 -0.7 10 10 A D - 0 0 103 -2,-0.3 3,-0.5 1,-0.1 0, 0.0 -0.891 67.3 -62.8-159.9-172.0 9.1 -5.1 1.1 11 11 A E S S+ 0 0 177 1,-0.3 2,-0.4 -2,-0.3 -1,-0.1 0.932 131.6 14.9 -49.8 -50.1 11.0 -4.9 4.4 12 12 A E S S+ 0 0 143 -3,-0.0 2,-0.3 0, 0.0 -1,-0.3 -0.887 85.5 168.2-131.5 99.1 11.1 -1.2 4.1 13 13 A R - 0 0 43 -3,-0.5 -4,-0.1 -2,-0.4 -10,-0.0 -0.852 31.2-132.6-114.2 150.5 8.6 0.3 1.6 14 14 A K + 0 0 100 -2,-0.3 -1,-0.2 -6,-0.2 -5,-0.0 0.805 51.4 125.7 -62.2-114.4 7.4 3.8 0.9 15 15 A c - 0 0 6 -10,-0.1 4,-0.1 3,-0.0 -2,-0.0 0.613 69.4 -82.8 60.6 135.9 3.6 4.1 0.6 16 16 A a - 0 0 58 2,-0.1 3,-0.5 1,-0.1 -14,-0.1 -0.246 39.9-106.9 -66.8 156.7 1.7 6.5 2.7 17 17 A E S S+ 0 0 202 1,-0.3 2,-0.7 -16,-0.2 -1,-0.1 0.711 114.0 74.1 -57.0 -20.7 0.6 5.5 6.2 18 18 A G S S+ 0 0 49 2,-0.0 2,-0.3 10,-0.0 -1,-0.3 -0.224 86.3 78.2 -89.9 46.5 -2.9 5.2 4.9 19 19 A L S S- 0 0 38 -2,-0.7 8,-0.1 -3,-0.5 2,-0.1 -0.975 71.7-128.5-154.9 138.4 -2.2 1.9 3.0 20 20 A V B -B 26 0B 55 6,-1.1 6,-0.6 -2,-0.3 2,-0.6 -0.414 25.0-122.8 -82.5 160.6 -1.8 -1.8 4.0 21 21 A b + 0 0 51 4,-0.2 2,-0.2 -2,-0.1 4,-0.1 -0.915 55.6 121.2-113.5 114.4 1.2 -3.9 2.9 22 22 A R S S- 0 0 155 -2,-0.6 2,-3.6 0, 0.0 -2,-0.1 -0.604 92.2 -45.8-170.1 99.1 0.6 -7.0 0.9 23 23 A L S S+ 0 0 128 -2,-0.2 -14,-1.5 -14,-0.0 2,-0.3 -0.310 133.1 5.5 69.9 -62.4 2.1 -7.6 -2.5 24 24 A W B S-A 8 0A 130 -2,-3.6 -16,-0.2 -16,-0.2 -18,-0.2 -0.983 98.0 -83.7-152.5 138.5 1.1 -4.0 -3.4 25 25 A c - 0 0 0 -18,-1.1 -19,-1.3 -2,-0.3 2,-0.4 -0.154 51.4-165.9 -44.7 120.5 -0.5 -1.2 -1.5 26 26 A K B -B 20 0B 85 -6,-0.6 -6,-1.1 -21,-0.1 -1,-0.1 -0.914 14.3-123.8-117.2 142.1 -4.3 -1.8 -1.5 27 27 A R - 0 0 164 -2,-0.4 2,-0.3 -8,-0.1 -1,-0.1 0.149 24.7-127.5 -65.8-170.0 -7.0 0.6 -0.5 28 28 A I + 0 0 120 -10,-0.1 2,-0.3 -9,-0.0 -1,-0.1 -0.993 24.7 174.1-149.2 138.8 -9.7 -0.0 2.1 29 29 A I - 0 0 127 -2,-0.3 0, 0.0 1,-0.1 0, 0.0 -0.962 24.6-158.9-142.5 158.7 -13.5 0.1 2.2 30 30 A N 0 0 171 -2,-0.3 -1,-0.1 0, 0.0 0, 0.0 0.735 360.0 360.0-105.8 -35.5 -16.3 -0.8 4.6 31 31 A M 0 0 240 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.961 360.0 360.0 -85.9 360.0 -19.2 -1.1 2.2