==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-FEB-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID BINDING PROTEIN 13-JUN-12 2LUG . COMPND 2 MOLECULE: MYELIN BASIC PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR M.A.M.AHMED,M.DE AVILA,E.POLVERINI,K.BESSONOV,V.V.BAMM,G.HAR . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3290.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 36.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 105 0, 0.0 28,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 167.2 0.8 1.2 0.0 2 2 A Q B -a 29 0A 110 26,-2.5 28,-2.4 28,-0.0 2,-0.3 -0.600 360.0-121.8-100.1 160.0 -0.4 4.9 0.3 3 3 A H + 0 0 137 -2,-0.2 2,-0.3 26,-0.2 -1,-0.0 -0.785 54.4 96.3-103.5 145.4 -1.2 7.4 -2.4 4 4 A G S S- 0 0 34 -2,-0.3 32,-0.1 2,-0.1 26,-0.0 -0.969 81.9 -71.8 171.9-161.8 0.5 10.8 -2.8 5 5 A R S S+ 0 0 215 -2,-0.3 2,-0.4 2,-0.1 -2,-0.0 0.185 92.2 107.6-105.7 13.8 3.2 12.6 -4.8 6 6 A T S S- 0 0 87 30,-0.1 28,-0.2 1,-0.1 27,-0.2 -0.754 76.5-106.7 -99.3 140.0 6.0 10.8 -2.9 7 7 A Q - 0 0 154 -2,-0.4 22,-0.3 27,-0.2 2,-0.1 -0.322 48.2 -86.8 -64.2 139.8 8.2 8.2 -4.4 8 8 A D - 0 0 58 22,-0.4 2,-0.3 20,-0.2 -1,-0.2 -0.264 50.0-133.0 -46.8 110.3 7.6 4.6 -3.3 9 9 A E - 0 0 15 18,-0.2 -1,-0.1 -2,-0.1 19,-0.1 -0.545 15.2-128.6 -74.4 130.1 9.8 4.3 -0.2 10 10 A N > - 0 0 95 -2,-0.3 4,-2.5 1,-0.1 5,-0.1 -0.468 13.6-124.7 -75.1 149.0 12.0 1.2 -0.1 11 11 A P H > S+ 0 0 80 0, 0.0 4,-2.0 0, 0.0 -1,-0.1 0.790 115.1 55.9 -62.9 -28.2 11.9 -1.0 3.1 12 12 A V H > S+ 0 0 107 2,-0.2 4,-2.2 1,-0.2 5,-0.1 0.895 107.8 46.7 -69.0 -42.2 15.7 -0.5 3.2 13 13 A V H > S+ 0 0 58 2,-0.2 4,-2.6 1,-0.2 5,-0.2 0.882 110.3 54.1 -64.5 -39.8 15.2 3.3 3.2 14 14 A H H X S+ 0 0 51 -4,-2.5 4,-1.9 2,-0.2 -2,-0.2 0.916 108.9 48.1 -58.5 -45.1 12.5 2.8 5.9 15 15 A F H X S+ 0 0 125 -4,-2.0 4,-1.4 2,-0.2 -2,-0.2 0.900 109.9 52.8 -63.5 -42.4 15.0 0.9 8.0 16 16 A F H >X S+ 0 0 124 -4,-2.2 4,-2.2 1,-0.2 3,-0.6 0.933 109.6 48.1 -55.4 -48.9 17.6 3.6 7.5 17 17 A K H 3X S+ 0 0 65 -4,-2.6 4,-2.2 1,-0.3 -1,-0.2 0.823 106.0 59.0 -65.0 -31.9 15.2 6.2 8.6 18 18 A N H 3< S+ 0 0 78 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.846 110.3 43.7 -60.8 -35.1 14.4 4.1 11.6 19 19 A I H << S+ 0 0 142 -4,-1.4 -2,-0.2 -3,-0.6 -1,-0.2 0.913 124.1 30.9 -77.1 -45.0 18.1 4.2 12.6 20 20 A V H < S+ 0 0 79 -4,-2.2 -2,-0.2 1,-0.2 -3,-0.2 0.632 119.2 53.3 -96.1 -16.9 18.8 7.9 12.0 21 21 A T < - 0 0 59 -4,-2.2 -1,-0.2 -5,-0.3 0, 0.0 -0.973 57.8-163.9-126.8 120.1 15.3 9.3 12.9 22 22 A P S S+ 0 0 131 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 0.759 72.4 87.5 -71.9 -25.1 13.5 8.5 16.1 23 23 A R S S- 0 0 209 1,-0.1 -2,-0.1 -6,-0.1 0, 0.0 -0.550 99.9 -92.4 -76.1 139.7 10.2 9.7 14.6 24 24 A T - 0 0 134 -2,-0.2 -1,-0.1 1,-0.1 -6,-0.1 -0.309 46.1-124.4 -56.6 117.6 8.2 7.1 12.8 25 25 A P - 0 0 11 0, 0.0 -1,-0.1 0, 0.0 -11,-0.1 -0.168 34.2 -88.8 -59.6 156.8 9.2 7.3 9.1 26 26 A P - 0 0 66 0, 0.0 3,-0.1 0, 0.0 2,-0.0 -0.272 48.7 -98.2 -67.6 154.9 6.5 7.9 6.5 27 27 A P - 0 0 78 0, 0.0 -18,-0.2 0, 0.0 2,-0.1 -0.284 44.8 -89.6 -72.5 158.5 4.7 4.9 5.0 28 28 A S - 0 0 44 -20,-0.1 -26,-2.5 1,-0.1 2,-0.2 -0.403 44.1-139.0 -68.7 144.2 5.6 3.4 1.6 29 29 A Q B -a 2 0A 17 -22,-0.3 -26,-0.2 -28,-0.2 3,-0.1 -0.627 26.0 -84.1-105.0 161.9 3.9 4.9 -1.4 30 30 A G > - 0 0 6 -28,-2.4 3,-1.9 -2,-0.2 -22,-0.4 -0.269 57.3 -90.9 -59.8 147.8 2.4 3.3 -4.6 31 31 A K T 3 S+ 0 0 193 1,-0.3 -1,-0.1 2,-0.1 -24,-0.1 -0.468 114.5 18.8 -65.1 121.4 4.8 2.7 -7.4 32 32 A G T 3> S+ 0 0 37 -2,-0.3 4,-1.9 -3,-0.1 3,-0.3 0.329 88.9 113.4 100.7 -5.1 4.9 5.7 -9.8 33 33 A R T <4 S+ 0 0 81 -3,-1.9 -26,-0.2 1,-0.2 -2,-0.1 0.799 71.6 60.7 -67.2 -29.3 3.5 8.1 -7.2 34 34 A G T 4 S+ 0 0 34 -4,-0.3 -27,-0.2 -28,-0.2 -1,-0.2 0.867 109.8 40.8 -64.7 -37.4 6.8 9.9 -7.1 35 35 A L T 4 0 0 171 -3,-0.3 -2,-0.2 1,-0.2 -1,-0.2 0.806 360.0 360.0 -80.1 -32.0 6.5 10.7 -10.8 36 36 A S < 0 0 100 -4,-1.9 -1,-0.2 -32,-0.1 -2,-0.2 0.492 360.0 360.0 -60.0 360.0 2.8 11.5 -10.5