==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 20-JUN-12 2LUR . COMPND 2 MOLECULE: KALATA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.L.DALY,R.ELIASEN,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2333.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 48.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 27.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 71 0, 0.0 22,-0.1 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 -29.5 2.1 0.0 -1.2 2 2 A G + 0 0 51 20,-0.7 2,-0.2 1,-0.3 21,-0.1 0.852 360.0 107.5 97.8 46.0 1.1 -3.6 -2.1 3 3 A E B -A 22 0A 108 19,-1.3 19,-2.3 25,-0.1 2,-0.4 -0.783 56.4-128.2-139.8-177.4 4.1 -5.6 -0.9 4 4 A T - 0 0 84 17,-0.3 2,-0.7 -2,-0.2 17,-0.3 -0.965 4.4-163.9-144.9 124.4 5.2 -8.0 1.8 5 5 A b > + 0 0 6 16,-0.8 3,-1.9 15,-0.4 14,-0.2 -0.524 24.3 159.4-105.0 63.9 8.2 -7.9 4.1 6 6 A V T 3 S+ 0 0 92 -2,-0.7 -1,-0.2 1,-0.3 15,-0.1 0.763 78.0 54.9 -55.5 -25.1 8.3 -11.5 5.3 7 7 A G T 3 S- 0 0 75 -3,-0.2 -1,-0.3 2,-0.2 -2,-0.1 0.674 120.1-110.1 -83.1 -17.9 11.9 -10.9 6.2 8 8 A G S < S+ 0 0 49 -3,-1.9 2,-0.4 12,-0.2 -2,-0.1 0.787 81.8 114.1 93.0 32.3 11.1 -7.8 8.3 9 9 A T + 0 0 108 1,-0.1 -2,-0.2 7,-0.1 -1,-0.2 -0.870 15.2 121.9-140.5 104.3 12.6 -5.2 6.0 10 10 A c + 0 0 22 -2,-0.4 2,-1.9 -5,-0.1 -1,-0.1 0.002 21.3 148.6-150.2 31.2 10.3 -2.6 4.3 11 11 A N + 0 0 154 5,-0.1 5,-0.2 3,-0.1 -2,-0.0 -0.524 26.7 156.7 -74.6 84.4 11.7 0.8 5.5 12 12 A T B > -C 15 0B 75 -2,-1.9 3,-1.8 3,-1.1 2,-1.6 -0.755 55.2 -91.9-111.4 158.5 10.9 2.8 2.4 13 13 A P T 3 S+ 0 0 139 0, 0.0 3,-0.1 0, 0.0 -2,-0.0 -0.488 117.9 4.5 -69.8 87.6 10.3 6.6 1.9 14 14 A G T 3 S+ 0 0 70 -2,-1.6 2,-0.3 1,-0.4 -3,-0.1 0.425 121.1 79.7 115.9 3.4 6.6 6.8 2.4 15 15 A a B < -C 12 0B 9 -3,-1.8 -3,-1.1 -5,-0.1 -1,-0.4 -0.984 57.2-154.1-141.7 151.2 5.9 3.2 3.3 16 16 A T E -B 23 0A 76 7,-2.5 7,-2.2 -2,-0.3 2,-0.3 -0.847 25.4-104.4-124.0 160.6 6.2 1.0 6.5 17 17 A b E +B 22 0A 48 -2,-0.3 5,-0.2 5,-0.2 4,-0.1 -0.613 29.2 176.4 -85.4 142.5 6.7 -2.7 7.1 18 18 A S E > -B 21 0A 44 3,-1.1 3,-0.7 -2,-0.3 4,-0.1 -0.304 38.7-118.5-141.4 52.4 3.7 -4.8 8.3 19 19 A W T 3 S+ 0 0 167 1,-0.4 2,-0.2 -14,-0.2 -13,-0.1 0.051 95.9 22.0 -35.8 138.7 5.0 -8.4 8.5 20 20 A P T 3 S+ 0 0 63 0, 0.0 -1,-0.4 0, 0.0 -15,-0.4 -0.835 140.6 25.1 -69.8 -36.8 4.1 -10.6 7.1 21 21 A V E < S- B 0 18A 73 -3,-0.7 -3,-1.1 -17,-0.3 -16,-0.8 0.124 80.3-131.1 -68.1-170.3 2.8 -8.2 4.6 22 22 A c E +AB 3 17A 1 -19,-2.3 -19,-1.3 -5,-0.2 -20,-0.7 -0.992 58.1 63.9-151.0 141.0 4.1 -4.6 4.0 23 23 A G E S- B 0 16A 0 -7,-2.2 -7,-2.5 -2,-0.3 2,-0.2 -0.757 84.6 -34.0 154.8-103.4 2.5 -1.2 3.7 24 24 A H - 0 0 42 -2,-0.2 -9,-0.0 -9,-0.1 0, 0.0 -0.709 40.4-117.7-139.7-169.8 0.6 0.6 6.4 25 25 A F S S+ 0 0 204 -2,-0.2 -1,-0.1 4,-0.1 -7,-0.0 0.661 109.3 42.0-108.1 -26.9 -1.7 0.1 9.4 26 26 A R S S+ 0 0 205 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.904 136.3 8.8 -86.3 -48.8 -4.7 2.0 8.2 27 27 A W S S- 0 0 178 2,-0.1 -4,-0.0 0, 0.0 -2,-0.0 0.889 82.2-141.5 -95.9 -68.5 -4.8 0.9 4.6 28 28 A G 0 0 32 1,-0.2 -6,-0.2 -7,-0.0 -25,-0.1 0.730 360.0 360.0 107.0 32.5 -2.2 -1.9 4.1 29 29 A V 0 0 87 -28,-0.1 -6,-0.2 -27,-0.1 -1,-0.2 -0.860 360.0 360.0-147.7 360.0 -0.7 -1.1 0.7