==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-NOV-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 10-JUL-12 2LVR . COMPND 2 MOLECULE: ZINC FINGER AND BTB DOMAIN-CONTAINING PROTEIN 17; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.BEDARD,L.MALTAIS,M.BEAULIEU,D.BERNARD,P.LAVIGNE . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3004.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 36.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 247 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -69.1 16.8 1.8 -2.7 2 2 A K - 0 0 158 12,-0.0 2,-0.1 2,-0.0 10,-0.0 -0.793 360.0-174.8 -95.8 117.6 14.0 1.4 -0.1 3 3 A P - 0 0 56 0, 0.0 2,-0.6 0, 0.0 11,-0.2 -0.418 31.5-111.9 -91.9 178.3 10.4 1.2 -1.5 4 4 A Y E -A 13 0A 88 9,-3.3 9,-2.3 -2,-0.1 2,-0.3 -0.931 39.9-159.1-113.2 102.5 7.2 1.1 0.4 5 5 A V E -A 12 0A 60 -2,-0.6 2,-0.5 7,-0.3 7,-0.2 -0.589 21.6-110.1 -90.6 143.1 5.8 -2.4 -0.1 6 6 A C > - 0 0 0 5,-2.4 4,-2.3 -2,-0.3 5,-0.1 -0.593 20.6-151.3 -68.3 121.5 2.2 -3.4 0.2 7 7 A I T 4 S+ 0 0 142 -2,-0.5 -1,-0.2 1,-0.2 -2,-0.0 0.729 92.7 48.0 -67.0 -21.3 1.9 -5.6 3.3 8 8 A H T 4 S+ 0 0 148 3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 0.832 131.5 9.7 -93.3 -35.0 -1.0 -7.4 1.8 9 9 A C T 4 S- 0 0 53 2,-0.1 -2,-0.2 -3,-0.1 -1,-0.1 0.421 96.1-118.2-128.4 -3.1 0.1 -8.3 -1.7 10 10 A Q < + 0 0 167 -4,-2.3 2,-0.5 1,-0.2 -3,-0.1 0.931 52.8 158.0 64.9 52.1 3.8 -7.4 -1.6 11 11 A R - 0 0 170 -5,-0.1 -5,-2.4 -7,-0.0 2,-0.7 -0.925 39.1-130.2-106.1 128.4 3.9 -4.6 -4.3 12 12 A Q E +A 5 0A 149 -2,-0.5 -7,-0.3 -7,-0.2 2,-0.2 -0.683 33.0 176.1 -85.3 114.4 6.8 -2.2 -4.1 13 13 A F E -A 4 0A 74 -9,-2.3 -9,-3.3 -2,-0.7 6,-0.0 -0.592 31.1-132.0-109.1 174.0 5.7 1.4 -4.2 14 14 A A S S+ 0 0 72 -11,-0.2 -1,-0.1 -2,-0.2 -9,-0.1 0.914 82.1 42.9 -89.8 -53.5 7.5 4.7 -3.9 15 15 A D > - 0 0 105 1,-0.1 4,-1.0 -11,-0.1 3,-0.4 -0.712 66.1-137.1-106.7 146.6 5.6 6.8 -1.4 16 16 A P H > S+ 0 0 71 0, 0.0 4,-1.5 0, 0.0 5,-0.1 0.793 108.2 61.9 -67.0 -28.6 3.9 5.9 1.9 17 17 A G H > S+ 0 0 41 1,-0.2 4,-1.6 2,-0.2 5,-0.1 0.835 101.8 51.4 -64.3 -32.1 1.0 8.0 0.8 18 18 A A H > S+ 0 0 32 -3,-0.4 4,-2.2 2,-0.2 -1,-0.2 0.798 104.4 57.0 -75.3 -28.7 0.6 5.6 -2.1 19 19 A L H X S+ 0 0 25 -4,-1.0 4,-3.4 2,-0.2 5,-0.2 0.866 107.5 47.8 -68.5 -34.2 0.6 2.7 0.3 20 20 A Q H X S+ 0 0 93 -4,-1.5 4,-1.5 2,-0.2 -2,-0.2 0.882 113.9 46.1 -76.1 -33.9 -2.3 4.1 2.1 21 21 A R H X S+ 0 0 160 -4,-1.6 4,-0.6 2,-0.2 -2,-0.2 0.855 117.0 48.3 -66.5 -35.4 -4.0 4.7 -1.1 22 22 A H H >X S+ 0 0 29 -4,-2.2 4,-1.0 2,-0.2 3,-0.7 0.927 108.0 49.8 -72.3 -49.5 -3.0 1.2 -2.0 23 23 A V H >X S+ 0 0 66 -4,-3.4 4,-1.2 1,-0.3 3,-0.7 0.889 108.5 52.9 -64.2 -37.6 -4.1 -0.6 1.1 24 24 A R H 3X S+ 0 0 120 -4,-1.5 4,-2.5 1,-0.3 6,-0.4 0.736 99.5 65.5 -69.8 -20.7 -7.5 1.0 1.1 25 25 A I H << S+ 0 0 120 -3,-0.7 -1,-0.3 -4,-0.6 -2,-0.2 0.854 98.3 53.5 -64.9 -34.8 -7.8 -0.3 -2.5 26 26 A H H << S+ 0 0 82 -4,-1.0 -2,-0.2 -3,-0.7 -1,-0.2 0.866 110.2 46.0 -68.2 -36.8 -7.7 -3.8 -1.0 27 27 A T H < S- 0 0 63 -4,-1.2 2,-2.6 1,-0.2 -2,-0.2 0.896 84.0-176.7 -68.9 -39.9 -10.6 -2.9 1.3 28 28 A G S < S+ 0 0 59 -4,-2.5 -1,-0.2 1,-0.2 -2,-0.1 -0.300 73.5 65.7 76.8 -56.7 -12.3 -1.4 -1.7 29 29 A E 0 0 193 -2,-2.6 -1,-0.2 -3,-0.1 -4,-0.1 0.790 360.0 360.0 -66.7 -29.7 -15.2 -0.2 0.5 30 30 A K 0 0 161 -6,-0.4 -2,-0.1 -5,-0.0 -6,-0.1 0.292 360.0 360.0-144.1 360.0 -12.8 2.1 2.2