==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-JUN-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 06-SEP-12 2LXY . COMPND 2 MOLECULE: 2-MERCAPTOPHENOL-ALPHA3C; . SOURCE 2 SYNTHETIC: YES . AUTHOR C.TOMMOS,K.G.VALENTINE,M.C.MARTINEZ-RIVERA,L.LIANG,V.R.MOORM . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5100.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 54 80.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 13.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 43 64.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 79 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-178.6 -9.8 -4.8 12.4 2 2 A S - 0 0 121 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.394 360.0 -31.1-149.3 -47.1 -12.9 -4.8 10.2 3 3 A R S > S+ 0 0 172 0, 0.0 4,-0.6 0, 0.0 43,-0.0 0.324 133.2 13.9-144.8 -72.6 -12.6 -2.4 7.4 4 4 A V H > S+ 0 0 36 2,-0.2 4,-1.5 1,-0.2 3,-0.4 0.882 122.9 57.6 -83.2 -42.8 -10.4 0.8 7.9 5 5 A K H > S+ 0 0 158 1,-0.3 4,-0.6 2,-0.2 -1,-0.2 0.809 110.6 46.5 -57.7 -30.5 -8.7 -0.4 11.1 6 6 A A H > S+ 0 0 19 2,-0.2 4,-0.9 1,-0.2 -1,-0.3 0.737 102.0 65.9 -83.2 -25.8 -7.5 -3.4 9.2 7 7 A L H >X S+ 0 0 0 -4,-0.6 4,-1.5 -3,-0.4 3,-0.7 0.919 98.8 50.7 -61.9 -47.0 -6.4 -1.3 6.2 8 8 A E H 3X S+ 0 0 84 -4,-1.5 4,-1.3 1,-0.2 -1,-0.2 0.821 109.5 51.6 -62.0 -32.8 -3.6 0.5 8.1 9 9 A E H 3X S+ 0 0 121 -4,-0.6 4,-0.9 2,-0.2 -1,-0.2 0.690 104.8 58.9 -77.4 -20.0 -2.2 -2.8 9.4 10 10 A K H < S+ 0 0 14 -4,-1.2 3,-2.4 1,-0.2 -2,-0.2 0.954 113.2 56.3 -64.8 -52.0 10.1 -3.7 0.7 19 19 A K T 3< S+ 0 0 160 -4,-3.0 -1,-0.2 1,-0.3 -3,-0.2 0.761 110.4 48.1 -52.2 -25.7 12.3 -2.0 3.2 20 20 A A T 3 S+ 0 0 83 -4,-0.5 -1,-0.3 -5,-0.4 -2,-0.2 0.563 103.9 77.3 -91.6 -11.0 14.0 -5.4 3.6 21 21 A L < - 0 0 69 -3,-2.4 2,-0.3 -4,-0.4 -3,-0.1 0.195 67.3-154.0 -78.8-156.6 14.3 -5.9 -0.2 22 22 A G + 0 0 47 2,-0.1 2,-0.1 1,-0.1 5,-0.1 -0.884 37.7 55.4 178.9 149.0 16.9 -4.2 -2.5 23 23 A G - 0 0 58 -2,-0.3 2,-0.1 4,-0.1 -1,-0.1 -0.184 65.6 -89.3 105.0 161.0 17.6 -3.1 -6.0 24 24 A G S S+ 0 0 46 3,-0.1 2,-0.8 -2,-0.1 3,-0.5 -0.204 81.7 56.8 -96.3-169.8 15.9 -0.9 -8.5 25 25 A G S > S+ 0 0 58 1,-0.2 4,-1.3 2,-0.1 3,-0.3 -0.797 117.4 15.8 94.2-111.4 13.2 -1.4 -11.2 26 26 A R H > S+ 0 0 100 -2,-0.8 4,-1.3 1,-0.2 -1,-0.2 0.783 127.3 57.4 -69.5 -27.7 10.0 -2.9 -9.8 27 27 A I H > S+ 0 0 13 -3,-0.5 4,-0.8 2,-0.2 -1,-0.2 0.791 101.2 57.6 -72.7 -29.5 11.1 -2.0 -6.3 28 28 A E H >> S+ 0 0 141 -3,-0.3 4,-1.6 2,-0.2 3,-0.9 0.967 108.5 41.7 -66.1 -56.2 11.4 1.7 -7.3 29 29 A E H 3X S+ 0 0 143 -4,-1.3 4,-1.5 1,-0.3 -1,-0.2 0.850 113.8 54.6 -60.6 -36.0 7.9 2.2 -8.5 30 30 A L H 3X S+ 0 0 2 -4,-1.3 4,-0.6 -5,-0.2 -1,-0.3 0.710 105.8 55.0 -71.1 -21.5 6.5 0.2 -5.5 31 31 A K H X S+ 0 0 98 -4,-1.6 4,-1.5 1,-0.2 3,-0.8 0.937 116.0 55.7 -68.2 -49.2 4.4 5.7 1.3 36 36 A E H 3X S+ 0 0 68 -4,-1.5 4,-0.9 -5,-0.3 -1,-0.2 0.796 103.8 59.4 -54.3 -28.5 2.2 8.1 -0.6 37 37 A L H 3X S+ 0 0 1 -4,-1.0 4,-0.7 2,-0.2 -1,-0.3 0.893 101.9 51.8 -67.7 -42.0 -0.5 5.5 -0.2 38 38 A K H XX S+ 0 0 60 -4,-1.0 3,-2.5 -3,-0.8 4,-1.2 0.972 106.1 51.4 -59.5 -58.2 -0.4 5.6 3.6 39 39 A K H 3X S+ 0 0 114 -4,-1.5 4,-1.4 1,-0.3 -1,-0.2 0.777 104.1 61.7 -51.1 -28.0 -0.8 9.3 3.9 40 40 A K H 3X S+ 0 0 62 -4,-0.9 4,-1.1 -5,-0.3 -1,-0.3 0.773 100.1 53.4 -70.9 -25.9 -3.8 9.0 1.6 41 41 A I H << S+ 0 0 7 -3,-2.5 -1,-0.2 -4,-0.7 -2,-0.2 0.806 103.5 56.2 -77.8 -30.5 -5.5 6.8 4.3 42 42 A E H < S+ 0 0 114 -4,-1.2 -2,-0.2 1,-0.2 -1,-0.2 0.896 107.1 48.5 -67.5 -41.0 -5.0 9.4 7.0 43 43 A E H < S+ 0 0 118 -4,-1.4 -1,-0.2 2,-0.0 -2,-0.2 0.854 98.6 89.2 -66.8 -35.4 -6.8 12.0 5.0 44 44 A L < - 0 0 22 -4,-1.1 4,-0.1 -5,-0.1 -3,-0.1 0.048 63.8-156.5 -55.3 170.6 -9.7 9.5 4.3 45 45 A G - 0 0 57 2,-0.3 -1,-0.1 0, 0.0 3,-0.1 0.339 46.2 -56.1-117.8-112.1 -12.6 9.2 6.7 46 46 A G S S- 0 0 51 1,-0.3 2,-0.2 -42,-0.0 -42,-0.1 0.784 102.8 -14.3-108.7 -45.2 -14.9 6.3 7.4 47 47 A G S S+ 0 0 56 3,-0.0 2,-1.1 -43,-0.0 -1,-0.3 -0.834 99.1 50.9-147.6-175.2 -16.4 5.5 4.0 48 48 A G S > S+ 0 0 68 -2,-0.2 3,-1.8 1,-0.2 4,-0.3 -0.702 114.9 34.4 86.2-100.0 -17.0 6.7 0.4 49 49 A E T >> S+ 0 0 124 -2,-1.1 4,-1.4 1,-0.3 3,-1.3 0.694 99.4 85.9 -62.9 -18.0 -13.6 7.7 -0.9 50 50 A V H 3> S+ 0 0 9 1,-0.3 4,-1.0 2,-0.2 -1,-0.3 0.734 81.1 62.7 -55.4 -22.3 -12.2 4.9 1.2 51 51 A K H <> S+ 0 0 166 -3,-1.8 4,-1.1 2,-0.2 -1,-0.3 0.855 100.1 51.6 -72.3 -36.1 -13.0 2.6 -1.8 52 52 A K H X> S+ 0 0 114 -3,-1.3 3,-1.2 -4,-0.3 4,-1.1 0.976 110.5 45.1 -64.8 -57.4 -10.6 4.5 -4.1 53 53 A V H 3X S+ 0 0 0 -4,-1.4 4,-1.1 1,-0.3 -1,-0.2 0.778 105.8 65.3 -58.0 -26.3 -7.5 4.4 -1.8 54 54 A E H 3X S+ 0 0 64 -4,-1.0 4,-1.0 -5,-0.3 3,-0.3 0.874 100.2 49.2 -64.3 -37.3 -8.4 0.7 -1.2 55 55 A E H X S+ 0 0 59 -4,-1.1 3,-1.9 1,-0.2 4,-1.4 0.970 100.8 46.6 -63.2 -56.7 2.9 -6.3 -7.5 64 64 A I H 3< S+ 0 0 18 -4,-1.5 -1,-0.2 1,-0.3 -2,-0.2 0.752 96.1 78.7 -58.2 -24.6 5.4 -7.4 -4.8 65 65 A K T 3< S+ 0 0 137 -4,-1.0 -1,-0.3 -5,-0.1 -2,-0.2 0.811 114.1 14.6 -54.7 -31.8 3.9 -10.9 -5.1 66 66 A K T <4 0 0 178 -3,-1.9 -2,-0.2 -4,-0.5 -3,-0.1 0.804 360.0 360.0-107.0 -68.1 5.9 -11.3 -8.3 67 67 A L < 0 0 91 -4,-1.4 -2,-0.1 -41,-0.1 -1,-0.1 -0.443 360.0 360.0 62.5 360.0 8.7 -8.7 -8.6