==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-SEP-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 23-SEP-12 2LZ3 . COMPND 2 MOLECULE: AMYLOID BETA A4 PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR W.CHEN,C.WANG . 56 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4654.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 52 92.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 16 28.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 36 64.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A K > 0 0 205 0, 0.0 4,-1.2 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 -53.9 7.0 7.7 0.2 2 6 A G H > + 0 0 53 1,-0.2 4,-2.0 2,-0.2 0, 0.0 0.822 360.0 62.7 -66.5 -32.4 7.1 9.9 -2.9 3 7 A A H 4 S+ 0 0 85 1,-0.2 4,-0.3 2,-0.2 -1,-0.2 0.857 99.9 52.9 -62.4 -36.1 9.5 7.5 -4.5 4 8 A I H >4 S+ 0 0 103 -3,-0.4 3,-1.4 1,-0.2 4,-0.3 0.920 108.6 49.3 -66.1 -43.9 6.9 4.7 -4.5 5 9 A I H >X S+ 0 0 96 -4,-1.2 3,-3.1 1,-0.3 4,-0.9 0.883 91.3 77.0 -63.1 -39.3 4.3 6.9 -6.2 6 10 A G H 3X S+ 0 0 39 -4,-2.0 4,-0.5 1,-0.3 -1,-0.3 0.713 89.7 62.1 -45.5 -17.1 6.9 7.9 -8.9 7 11 A L H <> S+ 0 0 104 -3,-1.4 4,-1.8 -4,-0.3 -1,-0.3 0.829 96.3 57.2 -78.0 -34.2 6.0 4.4 -10.2 8 12 A M H <> S+ 0 0 73 -3,-3.1 4,-1.2 -4,-0.3 3,-0.5 0.989 111.4 38.3 -60.2 -63.7 2.3 5.3 -10.7 9 13 A V H < S+ 0 0 96 -4,-0.9 4,-0.3 1,-0.2 -1,-0.2 0.728 109.9 69.5 -60.5 -20.6 2.9 8.2 -13.1 10 14 A G H >< S+ 0 0 32 -4,-0.5 3,-2.0 -5,-0.4 -1,-0.2 0.964 97.0 45.9 -62.4 -55.8 5.7 6.1 -14.5 11 15 A G H >< S+ 0 0 9 -4,-1.8 3,-4.1 -3,-0.5 4,-0.3 0.860 95.6 75.4 -57.6 -36.8 3.5 3.5 -16.2 12 16 A V T >X S+ 0 0 40 -4,-1.2 3,-1.5 1,-0.3 4,-0.5 0.717 80.9 73.8 -49.0 -18.7 1.3 6.2 -17.6 13 17 A V H <> S+ 0 0 92 -3,-2.0 4,-1.3 -4,-0.3 -1,-0.3 0.749 77.1 75.8 -67.4 -22.3 4.2 6.6 -20.0 14 18 A I H <> S+ 0 0 82 -3,-4.1 4,-2.3 1,-0.2 -1,-0.3 0.762 84.3 67.5 -60.1 -24.1 3.0 3.4 -21.6 15 19 A A H <> S+ 0 0 3 -3,-1.5 4,-2.5 -4,-0.3 5,-0.2 0.978 98.1 46.6 -60.7 -58.7 0.2 5.5 -23.1 16 20 A T H X S+ 0 0 81 -4,-0.5 4,-3.1 1,-0.2 -1,-0.2 0.862 111.6 54.3 -52.6 -38.3 2.4 7.5 -25.5 17 21 A V H X S+ 0 0 81 -4,-1.3 4,-2.1 2,-0.2 5,-0.3 0.947 106.9 49.2 -61.4 -50.7 4.2 4.3 -26.5 18 22 A I H X S+ 0 0 63 -4,-2.3 4,-1.5 1,-0.2 -2,-0.2 0.923 115.6 44.6 -56.1 -44.6 0.9 2.7 -27.5 19 23 A V H X S+ 0 0 22 -4,-2.5 4,-2.9 1,-0.2 -1,-0.2 0.908 106.6 60.4 -65.9 -43.6 -0.0 5.8 -29.5 20 24 A I H X S+ 0 0 88 -4,-3.1 4,-0.7 1,-0.2 -2,-0.2 0.916 107.7 43.8 -52.1 -49.2 3.5 6.0 -31.1 21 25 A T H >X S+ 0 0 70 -4,-2.1 4,-1.1 1,-0.2 3,-0.9 0.894 112.2 54.0 -64.7 -37.7 3.2 2.6 -32.7 22 26 A L H >X S+ 0 0 46 -4,-1.5 4,-1.8 -5,-0.3 3,-0.8 0.914 98.5 62.2 -61.9 -42.2 -0.3 3.4 -33.8 23 27 A V H 3X S+ 0 0 66 -4,-2.9 4,-0.7 1,-0.3 -1,-0.3 0.768 103.2 52.8 -55.6 -23.2 0.9 6.6 -35.5 24 28 A M H << S+ 0 0 119 -3,-0.9 -1,-0.3 -4,-0.7 3,-0.2 0.835 108.2 47.6 -80.1 -34.9 2.9 4.3 -37.7 25 29 A L H X< S+ 0 0 108 -4,-1.1 3,-0.9 -3,-0.8 -2,-0.2 0.699 98.2 72.4 -78.5 -19.8 -0.1 2.2 -38.6 26 30 A K H 3< S+ 0 0 92 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.904 106.5 35.0 -61.9 -41.5 -2.1 5.3 -39.4 27 31 A K T 3< 0 0 176 -4,-0.7 -1,-0.3 1,-0.2 -2,-0.2 0.273 360.0 360.0 -95.7 11.6 -0.1 5.9 -42.6 28 32 A K < 0 0 206 -3,-0.9 -1,-0.2 -5,-0.0 -2,-0.2 -0.160 360.0 360.0-172.6 360.0 0.2 2.2 -43.2 29 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 30 5 B K > 0 0 206 0, 0.0 4,-1.2 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 -53.8 0.2 -3.4 0.2 31 6 B G H > + 0 0 53 1,-0.2 4,-2.0 2,-0.2 0, 0.0 0.821 360.0 62.7 -66.5 -32.4 -1.4 -4.8 -2.9 32 7 B A H 4 S+ 0 0 86 1,-0.2 4,-0.3 2,-0.2 -1,-0.2 0.856 99.9 52.9 -62.4 -36.1 -4.1 -2.2 -2.7 33 8 B I H >4 S+ 0 0 102 -3,-0.4 3,-1.4 1,-0.2 4,-0.3 0.920 108.6 49.3 -66.0 -43.9 -1.6 0.6 -3.0 34 9 B I H >X S+ 0 0 98 -4,-1.2 3,-3.1 1,-0.3 4,-0.9 0.883 91.3 77.0 -63.1 -39.4 -0.1 -0.9 -6.2 35 10 B G H 3X S+ 0 0 41 -4,-2.0 4,-0.5 1,-0.3 -1,-0.3 0.713 89.7 62.1 -45.4 -17.1 -3.6 -1.3 -7.7 36 11 B L H <> S+ 0 0 106 -3,-1.4 4,-1.8 -4,-0.3 -1,-0.3 0.829 96.3 57.2 -78.0 -34.2 -3.2 2.5 -8.3 37 12 B M H <> S+ 0 0 72 -3,-3.1 4,-1.2 -4,-0.3 3,-0.5 0.989 111.4 38.3 -60.1 -63.8 -0.2 2.0 -10.6 38 13 B V H < S+ 0 0 94 -4,-0.9 4,-0.3 1,-0.2 -1,-0.2 0.728 109.9 69.5 -60.4 -20.6 -1.9 -0.3 -13.1 39 14 B G H >< S+ 0 0 34 -4,-0.5 3,-2.0 -5,-0.4 -1,-0.2 0.964 97.0 45.9 -62.4 -55.8 -5.0 2.0 -12.6 40 15 B G H >< S+ 0 0 9 -4,-1.8 3,-4.1 -3,-0.5 4,-0.3 0.860 95.6 75.4 -57.5 -36.9 -3.5 5.1 -14.3 41 16 B V T >X S+ 0 0 40 -4,-1.2 3,-1.5 1,-0.3 4,-0.5 0.718 80.9 73.8 -49.1 -18.6 -2.3 2.9 -17.2 42 17 B V H <> S+ 0 0 87 -3,-2.0 4,-1.3 -4,-0.3 -1,-0.3 0.749 77.1 75.8 -67.5 -22.1 -6.0 3.0 -18.1 43 18 B I H <> S+ 0 0 79 -3,-4.1 4,-2.3 1,-0.2 -1,-0.3 0.761 84.3 67.5 -60.2 -24.1 -5.4 6.6 -19.2 44 19 B A H <> S+ 0 0 5 -3,-1.5 4,-2.5 -4,-0.3 5,-0.2 0.978 98.1 46.6 -60.6 -58.8 -3.7 5.1 -22.3 45 20 B T H X S+ 0 0 79 -4,-0.5 4,-3.1 1,-0.2 -1,-0.2 0.862 111.6 54.3 -52.5 -38.3 -6.9 3.6 -23.8 46 21 B V H X S+ 0 0 81 -4,-1.3 4,-2.1 2,-0.2 5,-0.3 0.947 106.9 49.2 -61.4 -50.7 -8.7 6.9 -23.1 47 22 B I H X S+ 0 0 63 -4,-2.3 4,-1.5 1,-0.2 -2,-0.2 0.923 115.6 44.6 -56.0 -44.6 -6.0 8.9 -25.0 48 23 B V H X S+ 0 0 22 -4,-2.5 4,-2.9 1,-0.2 -1,-0.2 0.909 106.6 60.4 -66.0 -43.6 -6.3 6.5 -27.9 49 24 B I H X S+ 0 0 89 -4,-3.1 4,-0.7 1,-0.2 -2,-0.2 0.916 107.7 43.8 -52.2 -49.2 -10.1 6.5 -27.8 50 25 B T H >X S+ 0 0 70 -4,-2.1 4,-1.1 1,-0.2 3,-0.9 0.894 112.2 54.0 -64.7 -37.8 -10.4 10.2 -28.4 51 26 B L H >X S+ 0 0 44 -4,-1.5 4,-1.8 -5,-0.3 3,-0.8 0.914 98.5 62.2 -61.8 -42.2 -7.7 9.9 -31.1 52 27 B V H 3X S+ 0 0 65 -4,-2.9 4,-0.7 1,-0.3 -1,-0.3 0.768 103.2 52.8 -55.6 -23.3 -9.8 7.2 -32.9 53 28 B M H << S+ 0 0 119 -3,-0.9 -1,-0.3 -4,-0.7 3,-0.2 0.835 108.2 47.6 -80.1 -34.7 -12.4 9.9 -33.3 54 29 B L H X< S+ 0 0 106 -4,-1.1 3,-0.9 -3,-0.8 -2,-0.2 0.699 98.2 72.4 -78.6 -19.7 -10.0 12.3 -34.9 55 30 B K H 3< S+ 0 0 94 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.904 106.5 34.9 -61.9 -41.6 -8.7 9.6 -37.2 56 31 B K T 3< 0 0 175 -4,-0.7 -1,-0.3 1,-0.2 -2,-0.2 0.273 360.0 360.0 -95.7 11.6 -11.9 9.7 -39.2 57 32 B K < 0 0 205 -3,-0.9 -1,-0.2 -5,-0.0 -2,-0.2 -0.160 360.0 360.0-172.6 360.0 -12.3 13.5 -38.7