==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-SEP-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 23-SEP-12 2LZ4 . COMPND 2 MOLECULE: AMYLOID BETA A4 PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR W.CHEN,C.WANG . 56 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4745.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 54 96.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 42 75.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A K >> 0 0 203 0, 0.0 4,-0.8 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 38.3 4.2 1.8 -3.7 2 6 A G H 3> + 0 0 54 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.687 360.0 72.4 -73.7 -19.7 7.8 1.9 -2.5 3 7 A A H 3> S+ 0 0 86 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.862 93.5 54.7 -63.6 -35.8 7.1 5.2 -0.7 4 8 A I H <> S+ 0 0 82 -3,-0.6 4,-1.9 2,-0.2 -1,-0.2 0.955 114.2 36.9 -64.0 -52.6 5.1 3.3 1.9 5 9 A I H X S+ 0 0 96 -4,-0.8 4,-2.8 2,-0.2 5,-0.4 0.922 110.3 63.3 -67.1 -42.2 7.8 0.8 2.9 6 10 A G H X S+ 0 0 41 -4,-2.6 4,-0.7 1,-0.3 -1,-0.2 0.906 110.0 39.6 -47.0 -47.3 10.5 3.5 2.5 7 11 A L H X S+ 0 0 128 -4,-1.8 4,-3.2 2,-0.2 -1,-0.3 0.867 111.7 59.5 -70.7 -37.3 8.8 5.4 5.3 8 12 A M H X S+ 0 0 39 -4,-1.9 4,-1.4 1,-0.3 -2,-0.2 0.963 109.5 40.3 -55.0 -57.7 8.2 2.2 7.2 9 13 A V H X S+ 0 0 79 -4,-2.8 4,-0.8 1,-0.2 -1,-0.3 0.672 116.9 53.8 -66.5 -17.8 11.8 1.3 7.5 10 14 A G H X S+ 0 0 25 -4,-0.7 4,-2.2 -5,-0.4 -2,-0.2 0.881 100.2 57.6 -83.5 -42.6 12.6 4.9 8.1 11 15 A G H X S+ 0 0 14 -4,-3.2 4,-3.6 1,-0.2 5,-0.3 0.946 102.4 55.4 -52.5 -53.3 10.3 5.5 11.0 12 16 A V H X S+ 0 0 28 -4,-1.4 4,-2.7 1,-0.2 -1,-0.2 0.917 107.3 49.9 -46.1 -52.0 11.9 2.7 13.0 13 17 A V H X S+ 0 0 82 -4,-0.8 4,-0.8 1,-0.2 -1,-0.2 0.923 113.9 44.6 -56.0 -46.1 15.3 4.4 12.7 14 18 A I H >X S+ 0 0 106 -4,-2.2 4,-1.8 1,-0.2 3,-1.2 0.944 111.6 52.9 -63.4 -47.2 13.9 7.7 13.8 15 19 A A H 3X S+ 0 0 15 -4,-3.6 4,-1.5 1,-0.3 -1,-0.2 0.884 107.7 52.2 -54.9 -40.0 12.0 6.0 16.7 16 20 A T H 3X S+ 0 0 18 -4,-2.7 4,-0.8 -5,-0.3 -1,-0.3 0.703 107.1 54.3 -70.2 -20.0 15.2 4.4 17.8 17 21 A M H << S+ 0 0 111 -3,-1.2 4,-0.4 -4,-0.8 -2,-0.2 0.837 103.5 53.6 -82.6 -34.9 16.9 7.9 17.7 18 22 A I H >X S+ 0 0 116 -4,-1.8 3,-1.7 1,-0.2 4,-1.1 0.919 106.5 51.3 -65.7 -44.9 14.3 9.5 20.0 19 23 A V H 3X S+ 0 0 27 -4,-1.5 4,-2.2 1,-0.3 -1,-0.2 0.879 92.5 74.0 -61.8 -35.8 14.7 6.9 22.8 20 24 A I H 3X S+ 0 0 60 -4,-0.8 4,-1.3 1,-0.3 -1,-0.3 0.778 100.1 48.5 -48.5 -23.0 18.5 7.4 22.7 21 25 A T H <> S+ 0 0 76 -3,-1.7 4,-2.3 -4,-0.4 -1,-0.3 0.919 101.1 59.8 -82.1 -47.6 17.5 10.6 24.5 22 26 A L H X S+ 0 0 90 -4,-1.1 4,-0.5 1,-0.2 -2,-0.2 0.862 106.9 52.0 -47.8 -36.3 15.2 9.0 27.0 23 27 A V H >< S+ 0 0 21 -4,-2.2 3,-3.5 1,-0.2 4,-0.3 0.995 106.7 47.4 -63.7 -65.8 18.4 7.0 28.1 24 28 A M H >< S+ 0 0 136 -4,-1.3 3,-1.0 1,-0.3 -1,-0.2 0.770 107.9 61.0 -48.2 -26.8 20.7 10.0 28.5 25 29 A L H >< S+ 0 0 94 -4,-2.3 3,-3.6 1,-0.2 -1,-0.3 0.706 77.2 87.3 -75.1 -19.9 17.8 11.5 30.5 26 30 A K T << S+ 0 0 154 -3,-3.5 -1,-0.2 -4,-0.5 -2,-0.2 0.755 92.1 48.4 -51.2 -22.3 18.0 8.6 33.0 27 31 A K T < 0 0 181 -3,-1.0 -1,-0.3 -4,-0.3 -2,-0.1 0.084 360.0 360.0-105.0 22.0 20.6 10.8 34.8 28 32 A K < 0 0 208 -3,-3.6 -1,-0.1 0, 0.0 -2,-0.1 0.889 360.0 360.0 -39.3 360.0 18.4 13.9 34.6 29 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 30 5 B K >> 0 0 201 0, 0.0 4,-0.8 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 38.3 -5.4 -1.5 4.3 31 6 B G H 3> + 0 0 53 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.687 360.0 72.4 -73.6 -19.7 -5.2 -0.9 8.1 32 7 B A H 3> S+ 0 0 87 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.862 93.5 54.7 -63.6 -35.8 -2.9 -3.9 8.4 33 8 B I H <> S+ 0 0 82 -3,-0.6 4,-1.9 2,-0.2 -1,-0.2 0.955 114.2 36.9 -64.0 -52.5 -0.1 -1.9 6.7 34 9 B I H X S+ 0 0 99 -4,-0.8 4,-2.8 2,-0.2 5,-0.4 0.921 110.3 63.2 -67.1 -42.2 -0.1 1.1 9.1 35 10 B G H X S+ 0 0 40 -4,-2.6 4,-0.7 1,-0.3 -1,-0.2 0.906 110.0 39.6 -47.0 -47.2 -0.9 -1.2 12.0 36 11 B L H X S+ 0 0 129 -4,-1.8 4,-3.2 2,-0.2 -1,-0.3 0.867 111.7 59.4 -70.7 -37.3 2.5 -2.9 11.4 37 12 B M H X S+ 0 0 36 -4,-1.9 4,-1.5 1,-0.3 -2,-0.2 0.963 109.6 40.3 -55.0 -57.7 4.1 0.5 10.7 38 13 B V H X S+ 0 0 80 -4,-2.8 4,-0.8 1,-0.2 -1,-0.3 0.672 116.9 53.8 -66.5 -17.7 3.3 2.0 14.1 39 14 B G H X S+ 0 0 26 -4,-0.7 4,-2.2 -5,-0.4 -2,-0.2 0.881 100.2 57.6 -83.6 -42.5 4.2 -1.3 15.6 40 15 B G H X S+ 0 0 14 -4,-3.2 4,-3.6 1,-0.2 5,-0.3 0.946 102.4 55.3 -52.6 -53.3 7.7 -1.7 14.1 41 16 B V H X S+ 0 0 28 -4,-1.5 4,-2.7 1,-0.2 -1,-0.2 0.917 107.3 50.0 -46.1 -52.0 8.8 1.6 15.6 42 17 B V H X S+ 0 0 82 -4,-0.8 4,-0.8 1,-0.2 -1,-0.2 0.922 113.9 44.6 -56.0 -46.1 7.9 0.4 19.1 43 18 B I H >X S+ 0 0 106 -4,-2.2 4,-1.8 1,-0.2 3,-1.2 0.944 111.6 52.9 -63.4 -47.2 9.8 -2.9 18.5 44 19 B A H 3X S+ 0 0 16 -4,-3.6 4,-1.5 1,-0.3 -1,-0.2 0.884 107.7 52.2 -54.7 -40.1 12.7 -1.1 17.1 45 20 B T H 3X S+ 0 0 17 -4,-2.7 4,-0.8 -5,-0.3 -1,-0.3 0.702 107.1 54.3 -70.1 -20.0 12.8 1.2 20.2 46 21 B M H << S+ 0 0 111 -3,-1.2 4,-0.4 -4,-0.8 -2,-0.2 0.836 103.5 53.6 -82.6 -34.9 12.8 -2.0 22.3 47 22 B I H >X S+ 0 0 116 -4,-1.8 3,-1.7 1,-0.2 4,-1.1 0.919 106.5 51.3 -65.7 -44.8 15.9 -3.5 20.7 48 23 B V H 3X S+ 0 0 27 -4,-1.5 4,-2.2 1,-0.3 -1,-0.2 0.879 92.5 73.9 -61.7 -35.9 18.0 -0.4 21.2 49 24 B I H 3X S+ 0 0 58 -4,-0.8 4,-1.3 1,-0.3 -1,-0.3 0.778 100.1 48.5 -48.5 -23.0 17.1 -0.4 24.9 50 25 B T H <> S+ 0 0 78 -3,-1.7 4,-2.3 -4,-0.4 -1,-0.3 0.919 101.1 59.8 -82.1 -47.6 19.5 -3.4 25.0 51 26 B L H X S+ 0 0 91 -4,-1.1 4,-0.5 1,-0.2 -2,-0.2 0.862 106.9 52.0 -47.8 -36.2 22.3 -1.6 23.1 52 27 B V H >< S+ 0 0 22 -4,-2.2 3,-3.5 1,-0.2 4,-0.3 0.995 106.7 47.4 -63.7 -65.7 22.2 0.8 25.9 53 28 B M H >< S+ 0 0 138 -4,-1.3 3,-1.0 1,-0.3 -1,-0.2 0.770 107.9 61.0 -48.2 -26.9 22.5 -1.6 28.8 54 29 B L H >< S+ 0 0 93 -4,-2.3 3,-3.6 1,-0.2 -1,-0.3 0.707 77.2 87.3 -75.0 -19.9 25.3 -3.2 26.8 55 30 B K T << S+ 0 0 153 -3,-3.5 -1,-0.2 -4,-0.5 -2,-0.2 0.755 92.1 48.4 -51.2 -22.3 27.2 0.1 27.0 56 31 B K T < 0 0 185 -3,-1.0 -1,-0.3 -4,-0.3 -2,-0.1 0.083 360.0 360.0-105.0 22.0 28.6 -1.3 30.2 57 32 B K < 0 0 207 -3,-3.6 -1,-0.1 0, 0.0 -2,-0.1 0.890 360.0 360.0 -39.4 360.0 29.4 -4.7 28.7