==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-APR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN TRANSPORT 08-OCT-12 2LZR . COMPND 2 MOLECULE: SEC-INDEPENDENT PROTEIN TRANSLOCASE PROTEIN TATA; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR F.M.RODRIGUEZ,B.C.BERKS,J.R.SCHNELL . 49 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4964.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 75.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 10.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 219 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -54.2 -26.7 -3.4 -4.5 2 2 A G - 0 0 87 1,-0.1 0, 0.0 2,-0.0 0, 0.0 0.867 360.0 -69.5 -64.3 -36.6 -24.4 -3.0 -1.6 3 3 A G S S+ 0 0 21 6,-0.0 6,-0.2 0, 0.0 -1,-0.1 0.372 91.9 130.5 153.5 19.7 -21.4 -3.2 -3.9 4 4 A I + 0 0 158 4,-0.1 2,-0.2 3,-0.0 5,-0.0 0.787 52.0 99.5 -64.7 -25.1 -21.2 -6.8 -5.1 5 5 A S S > S- 0 0 53 1,-0.2 4,-1.1 2,-0.1 3,-0.2 -0.425 70.7-146.9 -65.1 130.4 -20.9 -5.3 -8.6 6 6 A I H >> S+ 0 0 134 1,-0.2 4,-1.9 2,-0.2 3,-0.6 0.903 99.5 57.8 -65.2 -40.7 -17.3 -5.3 -9.8 7 7 A W H 3> S+ 0 0 183 1,-0.3 4,-2.2 2,-0.2 5,-0.3 0.827 99.3 60.6 -58.8 -31.7 -17.8 -2.1 -11.8 8 8 A Q H 3> S+ 0 0 83 1,-0.2 4,-1.8 -3,-0.2 -1,-0.3 0.897 106.1 45.8 -64.2 -38.4 -19.0 -0.5 -8.6 9 9 A L H S- 0 0 116 -4,-2.4 4,-0.9 -5,-0.3 5,-0.5 0.607 102.9-152.0 -87.9 -12.8 -5.4 10.9 -2.9 21 21 A G H X5 - 0 0 18 -4,-1.9 4,-1.5 -5,-0.2 5,-0.1 0.303 32.1 -82.3 57.6 161.5 -3.4 11.1 -6.2 22 22 A P H >5S+ 0 0 109 0, 0.0 4,-1.4 0, 0.0 -1,-0.2 0.757 123.5 63.0 -70.0 -25.1 -0.6 8.6 -6.9 23 23 A K H >5S+ 0 0 173 2,-0.2 4,-1.5 1,-0.2 5,-0.2 0.951 108.4 37.2 -66.7 -50.7 2.0 10.5 -4.9 24 24 A K H X5S+ 0 0 119 -4,-0.9 4,-2.8 1,-0.2 5,-0.2 0.929 116.8 52.5 -67.3 -45.0 0.3 10.2 -1.4 25 25 A L H X< S+ 0 0 117 -4,-2.7 3,-0.7 -5,-0.3 4,-0.2 0.931 120.3 35.1 -62.4 -45.4 5.0 2.8 4.3 32 32 A L H >< S+ 0 0 115 -4,-2.6 3,-0.7 1,-0.2 4,-0.4 0.700 111.9 63.3 -80.5 -20.2 2.2 0.3 5.2 33 33 A G T 3X S+ 0 0 24 -4,-2.6 4,-1.7 -5,-0.2 -1,-0.2 0.424 78.7 88.1 -82.9 1.1 3.6 -2.2 2.7 34 34 A A H <> S+ 0 0 63 -3,-0.7 4,-1.1 -4,-0.3 -1,-0.2 0.868 85.6 51.8 -67.1 -35.7 6.8 -2.4 4.8 35 35 A S H <> S+ 0 0 76 -3,-0.7 4,-1.4 -4,-0.2 3,-0.3 0.885 106.8 53.5 -67.7 -38.0 5.3 -5.2 6.9 36 36 A I H > S+ 0 0 116 -4,-0.4 4,-2.2 1,-0.2 -1,-0.2 0.892 101.4 60.0 -62.5 -41.2 4.3 -7.2 3.9 37 37 A K H X S+ 0 0 159 -4,-1.7 4,-2.5 1,-0.2 -1,-0.2 0.868 102.8 52.0 -56.7 -38.1 7.9 -7.0 2.6 38 38 A G H X S+ 0 0 39 -4,-1.1 4,-2.9 -3,-0.3 -1,-0.2 0.889 106.8 53.2 -66.9 -38.2 9.1 -8.8 5.7 39 39 A F H X S+ 0 0 148 -4,-1.4 4,-2.1 2,-0.2 -2,-0.2 0.930 111.6 45.2 -62.0 -45.6 6.5 -11.6 5.2 40 40 A K H < S+ 0 0 161 -4,-2.2 4,-0.3 2,-0.2 -2,-0.2 0.933 113.7 49.3 -64.5 -46.1 7.7 -12.2 1.7 41 41 A K H >X S+ 0 0 151 -4,-2.5 3,-1.9 1,-0.2 4,-0.6 0.951 110.7 49.3 -59.4 -50.4 11.4 -12.1 2.7 42 42 A A H >< S+ 0 0 72 -4,-2.9 3,-0.9 1,-0.3 4,-0.5 0.912 111.8 48.7 -56.0 -43.6 11.0 -14.5 5.5 43 43 A M T 3< S+ 0 0 113 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.474 91.7 85.7 -75.8 0.9 9.1 -16.9 3.3 44 44 A S T <4 S+ 0 0 73 -3,-1.9 -1,-0.2 -4,-0.3 -2,-0.2 0.879 84.1 54.1 -67.9 -38.0 11.9 -16.5 0.8 45 45 A D S << S+ 0 0 138 -3,-0.9 -1,-0.2 -4,-0.6 -2,-0.2 0.909 106.7 60.2 -63.1 -41.7 14.0 -19.2 2.4 46 46 A D S S- 0 0 90 -4,-0.5 0, 0.0 1,-0.0 0, 0.0 -0.180 71.8-151.7 -78.2 177.4 11.1 -21.7 2.1 47 47 A E + 0 0 121 2,-0.1 -3,-0.1 1,-0.1 -2,-0.0 -0.532 17.4 176.7-153.6 80.9 9.5 -22.8 -1.2 48 48 A P 0 0 115 0, 0.0 -1,-0.1 0, 0.0 -5,-0.0 0.874 360.0 360.0 -53.2 -36.9 5.8 -23.9 -1.2 49 49 A K 0 0 234 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.965 360.0 360.0 -66.7 360.0 6.1 -24.3 -5.0