==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-NOV-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 24-OCT-12 2M0D . COMPND 2 MOLECULE: ZINC FINGER AND BTB DOMAIN-CONTAINING PROTEIN 17; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR D.BERNARD,M.BEDARD,J.BILODEAU,P.LAVIGNE . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 240 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 124.5 -16.4 -0.3 -3.2 2 2 A K - 0 0 164 12,-0.1 2,-0.3 2,-0.0 0, 0.0 -0.922 360.0-136.3-143.0 117.9 -12.9 -1.4 -4.1 3 3 A P - 0 0 69 0, 0.0 2,-2.0 0, 0.0 11,-0.2 -0.562 12.1-134.9 -79.1 129.8 -10.2 -2.0 -1.5 4 4 A Y E +A 13 0A 106 9,-1.8 9,-1.6 -2,-0.3 11,-0.2 -0.555 41.8 176.0 -82.7 74.7 -6.8 -0.5 -2.3 5 5 A Q E -A 12 0A 115 -2,-2.0 2,-0.5 7,-0.3 7,-0.3 -0.454 32.1-113.7 -85.9 154.6 -5.0 -3.7 -1.2 6 6 A C > - 0 0 2 5,-2.1 4,-3.2 -2,-0.1 5,-0.3 -0.786 15.1-140.1 -93.1 130.9 -1.2 -4.3 -1.5 7 7 A D T 4 S+ 0 0 144 -2,-0.5 -1,-0.1 1,-0.2 -2,-0.0 0.719 102.7 34.6 -62.0 -22.9 -0.2 -7.0 -4.0 8 8 A Y T 4 S+ 0 0 172 3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 0.682 124.0 42.0-103.7 -23.7 2.5 -8.3 -1.6 9 9 A C T 4 S- 0 0 62 -3,-0.2 -2,-0.2 2,-0.2 3,-0.1 0.731 84.3-143.4 -98.6 -28.9 0.8 -7.7 1.6 10 10 A G < + 0 0 52 -4,-3.2 2,-0.5 1,-0.3 -3,-0.1 0.512 56.6 137.3 72.0 3.9 -2.7 -8.8 0.9 11 11 A R - 0 0 144 -5,-0.3 -5,-2.1 -7,-0.0 2,-0.6 -0.713 52.3-136.4 -90.1 128.4 -3.7 -5.9 3.2 12 12 A S E -A 5 0A 46 -2,-0.5 2,-0.5 -7,-0.3 -7,-0.3 -0.740 14.9-161.6 -85.9 116.8 -6.6 -3.8 2.1 13 13 A F E -A 4 0A 33 -9,-1.6 -9,-1.8 -2,-0.6 6,-0.0 -0.885 10.6-156.6 -96.6 127.9 -6.0 -0.1 2.5 14 14 A S S S+ 0 0 120 -2,-0.5 -1,-0.1 -11,-0.2 -9,-0.1 0.391 80.7 62.8 -82.7 5.6 -9.2 1.9 2.5 15 15 A D > - 0 0 60 -11,-0.2 4,-2.1 1,-0.1 5,-0.2 -0.984 67.0-154.5-138.1 122.8 -7.2 4.9 1.5 16 16 A P H > S+ 0 0 58 0, 0.0 4,-0.6 0, 0.0 -1,-0.1 0.745 94.6 61.4 -65.4 -24.7 -5.1 5.3 -1.8 17 17 A T H > S+ 0 0 94 2,-0.2 4,-2.5 1,-0.2 3,-0.4 0.966 111.3 33.7 -68.7 -54.8 -2.8 7.8 -0.1 18 18 A S H > S+ 0 0 56 1,-0.3 4,-2.5 2,-0.2 5,-0.2 0.832 116.3 56.8 -73.2 -31.0 -1.5 5.5 2.7 19 19 A K H X S+ 0 0 47 -4,-2.1 4,-0.7 2,-0.2 -1,-0.3 0.732 110.5 48.5 -65.8 -19.3 -1.7 2.6 0.3 20 20 A M H X S+ 0 0 104 -4,-0.6 4,-2.4 -3,-0.4 5,-0.3 0.944 111.7 43.8 -86.8 -53.6 0.6 4.7 -1.9 21 21 A R H X S+ 0 0 144 -4,-2.5 4,-3.1 1,-0.2 5,-0.2 0.911 114.5 52.7 -54.5 -44.7 3.2 5.7 0.7 22 22 A H H < S+ 0 0 63 -4,-2.5 4,-0.3 1,-0.2 -1,-0.2 0.843 111.5 46.1 -62.1 -34.6 3.2 2.1 1.9 23 23 A L H < S+ 0 0 41 -4,-0.7 -1,-0.2 -3,-0.2 -2,-0.2 0.845 118.4 40.0 -79.5 -33.5 3.8 0.9 -1.6 24 24 A E H >< S+ 0 0 87 -4,-2.4 3,-0.9 1,-0.2 -2,-0.2 0.822 115.6 49.9 -85.4 -32.6 6.6 3.4 -2.4 25 25 A T T 3< S+ 0 0 70 -4,-3.1 -1,-0.2 -5,-0.3 -2,-0.2 0.510 85.7 88.1 -84.6 -3.7 8.2 3.3 1.0 26 26 A H T 3 S+ 0 0 73 -4,-0.3 2,-2.1 -5,-0.2 -1,-0.2 0.812 71.5 82.2 -55.9 -29.4 8.2 -0.5 0.6 27 27 A D < + 0 0 137 -3,-0.9 -1,-0.2 -4,-0.2 3,-0.1 -0.533 54.4 122.0 -76.2 72.0 11.5 0.3 -1.0 28 28 A T + 0 0 98 -2,-2.1 -1,-0.2 1,-0.1 -3,-0.1 -0.311 19.8 124.6-129.6 48.7 13.4 0.5 2.3 29 29 A D 0 0 160 1,-0.3 -1,-0.1 0, 0.0 -2,-0.1 0.822 360.0 360.0 -77.5 -32.5 16.1 -2.1 1.7 30 30 A K 0 0 255 -3,-0.1 -1,-0.3 0, 0.0 -3,-0.0 -0.681 360.0 360.0-142.8 360.0 18.8 0.4 2.5