==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-JUN-02 1M2S . COMPND 2 MOLECULE: TOXIN BMTX3; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR Y.WANG,M.LI,N.ZHANG,G.WU,G.HU,H.WU . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3008.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 59.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 18.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F 0 0 199 0, 0.0 2,-0.5 0, 0.0 36,-0.2 0.000 360.0 360.0 360.0-108.0 0.2 -2.8 10.2 2 2 A G + 0 0 21 34,-2.5 2,-0.3 22,-0.1 16,-0.0 -0.703 360.0 167.6 -76.4 126.3 1.7 -2.7 6.7 3 3 A L + 0 0 130 -2,-0.5 2,-0.3 32,-0.2 32,-0.2 -0.972 8.2 160.4-141.8 130.9 3.8 0.5 6.1 4 4 A I B -A 34 0A 57 30,-2.2 30,-0.9 -2,-0.3 2,-0.3 -0.831 38.2-128.7-136.1 167.4 6.0 0.7 3.1 5 5 A D + 0 0 113 -2,-0.3 2,-0.3 28,-0.2 28,-0.1 -0.774 56.2 122.5-129.7 88.4 7.8 3.3 1.0 6 6 A V S S- 0 0 87 -2,-0.3 -2,-0.1 28,-0.0 2,-0.1 -0.963 73.8 -88.2-133.2 137.9 7.0 2.8 -2.6 7 7 A K - 0 0 163 -2,-0.3 2,-0.3 1,-0.1 26,-0.2 -0.165 40.8-142.6 -41.0 107.7 5.4 5.5 -4.8 8 8 A a - 0 0 10 22,-0.2 3,-0.1 1,-0.2 -1,-0.1 -0.616 23.2-179.7 -68.2 133.6 1.7 5.3 -4.6 9 9 A F S S- 0 0 203 1,-0.5 2,-0.2 -2,-0.3 -1,-0.2 0.513 80.2 -26.2 -93.6 -15.1 -0.1 6.1 -7.8 10 10 A A >> - 0 0 37 -3,-0.1 3,-1.7 1,-0.1 4,-1.1 -0.876 67.5 -96.2 176.3 155.9 -3.3 5.5 -5.7 11 11 A S H 3> S+ 0 0 24 1,-0.3 4,-0.8 -2,-0.2 3,-0.1 0.855 120.8 65.2 -51.5 -39.6 -4.6 3.6 -2.6 12 12 A S H 3> S+ 0 0 70 1,-0.2 4,-1.2 2,-0.2 -1,-0.3 0.710 96.1 56.6 -62.8 -20.2 -5.7 0.9 -5.0 13 13 A E H <> S+ 0 0 64 -3,-1.7 4,-3.0 2,-0.2 -1,-0.2 0.948 97.4 60.5 -72.2 -49.2 -2.1 0.3 -5.9 14 14 A b H X S+ 0 0 0 -4,-1.1 4,-2.7 2,-0.2 5,-0.2 0.735 100.3 59.9 -46.6 -29.6 -1.1 -0.4 -2.3 15 15 A W H X S+ 0 0 131 -4,-0.8 4,-2.7 2,-0.2 -1,-0.2 0.997 108.5 39.0 -63.6 -66.1 -3.6 -3.2 -2.6 16 16 A T H X S+ 0 0 69 -4,-1.2 4,-2.6 1,-0.2 -2,-0.2 0.842 117.6 53.9 -51.4 -35.9 -1.7 -4.9 -5.4 17 17 A A H X S+ 0 0 19 -4,-3.0 4,-2.2 2,-0.2 -1,-0.2 0.985 111.4 41.5 -63.1 -57.1 1.5 -4.0 -3.5 18 18 A c H X>S+ 0 0 3 -4,-2.7 4,-2.7 1,-0.2 5,-2.0 0.839 116.5 52.3 -58.8 -33.8 0.5 -5.6 -0.2 19 19 A K H <5S+ 0 0 123 -4,-2.7 -1,-0.2 4,-0.3 -2,-0.2 0.897 104.3 54.8 -69.2 -42.8 -0.9 -8.4 -2.2 20 20 A K H <5S+ 0 0 179 -4,-2.6 -2,-0.2 -5,-0.2 -1,-0.2 0.947 117.2 36.7 -54.3 -53.8 2.3 -9.0 -4.1 21 21 A V H <5S- 0 0 122 -4,-2.2 -2,-0.2 -5,-0.1 -1,-0.2 0.958 146.2 -16.9 -62.8 -57.1 4.3 -9.3 -0.8 22 22 A T T <5S- 0 0 104 -4,-2.7 -3,-0.3 -5,-0.2 -2,-0.1 0.760 82.1-105.2-116.4 -57.2 1.7 -11.2 1.3 23 23 A G S -B 33 0A 94 3,-2.6 3,-2.4 -2,-0.3 2,-1.8 -0.988 64.3 -50.7-125.3 116.9 -0.3 8.1 1.9 31 31 A N T 3 S- 0 0 129 -2,-0.4 -2,-0.1 1,-0.3 3,-0.0 -0.321 125.3 -26.7 66.0 -82.4 1.2 10.9 -0.2 32 32 A N T 3 S+ 0 0 69 -2,-1.8 -1,-0.3 -25,-0.1 2,-0.2 -0.147 128.8 77.5-157.9 43.3 3.5 8.5 -2.2 33 33 A Q E < - B 0 30A 57 -3,-2.4 -3,-2.6 -26,-0.2 2,-0.3 -0.794 67.0-141.6-141.7 178.4 3.9 5.7 0.3 34 34 A b E -AB 4 29A 1 -30,-0.9 -30,-2.2 -5,-0.3 2,-0.3 -0.974 10.0-161.6-159.3 152.5 1.4 2.9 1.1 35 35 A R E - B 0 28A 111 -7,-2.0 -7,-2.4 -2,-0.3 2,-0.2 -0.997 4.6-155.9-146.3 132.9 0.0 0.8 4.0 36 36 A c E B 0 27A 18 -2,-0.3 -34,-2.5 -9,-0.3 -9,-0.3 -0.713 360.0 360.0-102.9 164.2 -1.9 -2.5 4.4 37 37 A Y 0 0 180 -11,-2.7 -11,-0.3 -13,-0.3 -34,-0.0 -0.803 360.0 360.0-106.4 360.0 -4.1 -3.5 7.4