==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-MAY-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 28-DEC-12 2M2M . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.ZAKOVA,V.VEVERKA,J.JIRACEK . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4142.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 58.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 19.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 25.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 70 0, 0.0 4,-0.4 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-157.8 5.0 -3.8 1.3 2 2 A I >> + 0 0 38 1,-0.2 4,-2.5 2,-0.2 3,-1.0 0.861 360.0 54.6 -64.7 -36.8 4.8 -6.0 -1.8 3 3 A V H 3>>S+ 0 0 66 1,-0.3 4,-2.2 2,-0.2 5,-0.8 0.929 107.8 50.6 -64.0 -41.9 1.7 -8.1 -0.6 4 4 A E H 345S+ 0 0 128 1,-0.2 -1,-0.3 3,-0.2 -2,-0.2 0.535 115.5 45.0 -73.0 -6.5 -0.2 -4.8 -0.2 5 5 A Q H <45S+ 0 0 66 -3,-1.0 -2,-0.2 -4,-0.4 -1,-0.2 0.786 128.9 19.0 -98.8 -40.9 0.8 -3.8 -3.8 6 6 A a H <5S+ 0 0 0 -4,-2.5 22,-2.3 2,-0.1 5,-0.2 0.710 119.7 53.4-107.5 -30.5 0.2 -7.1 -5.7 7 7 A b T <5S+ 0 0 49 -4,-2.2 -3,-0.2 -5,-0.4 -4,-0.1 0.838 113.6 41.4 -78.8 -33.8 -2.2 -9.3 -3.6 8 8 A T S > - 0 0 14 -2,-0.2 4,-2.6 13,-0.2 3,-1.9 -0.895 24.6-111.0-131.4 155.3 3.4 -4.6 -12.9 13 13 A L H 3> S+ 0 0 69 -2,-0.3 4,-2.2 1,-0.3 5,-0.2 0.880 112.8 59.6 -53.9 -42.9 7.0 -5.7 -13.4 14 14 A Y H 34 S+ 0 0 153 1,-0.2 -1,-0.3 2,-0.2 -3,-0.0 0.550 118.0 29.3 -67.1 -13.9 8.4 -2.1 -13.5 15 15 A Q H X4 S+ 0 0 41 -3,-1.9 3,-0.7 2,-0.1 4,-0.2 0.652 114.0 58.3-118.4 -31.8 7.1 -1.4 -9.9 16 16 A L H >< S+ 0 0 0 -4,-2.6 3,-1.7 1,-0.2 -2,-0.2 0.855 96.1 67.6 -70.1 -32.4 7.2 -4.9 -8.3 17 17 A E G >< S+ 0 0 90 -4,-2.2 3,-1.7 -5,-0.3 -1,-0.2 0.804 87.5 69.4 -46.4 -37.0 11.0 -5.0 -9.1 18 18 A N G X S+ 0 0 110 -3,-0.7 3,-0.7 1,-0.3 -1,-0.3 0.718 89.4 61.3 -62.4 -24.5 11.4 -2.2 -6.5 19 19 A Y G < S+ 0 0 89 -3,-1.7 -1,-0.3 -4,-0.2 -2,-0.2 0.404 78.8 84.2 -88.2 -1.1 10.6 -4.6 -3.6 20 20 A c G < 0 0 57 -3,-1.7 -1,-0.2 -4,-0.2 -2,-0.1 0.467 360.0 360.0 -76.1 -3.9 13.6 -6.9 -4.3 21 21 A N < 0 0 195 -3,-0.7 -3,-0.0 -4,-0.1 -2,-0.0 -0.173 360.0 360.0 -55.6 360.0 15.7 -4.5 -2.2 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 106 0, 0.0 2,-0.4 0, 0.0 -11,-0.0 0.000 360.0 360.0 360.0 163.0 5.4 -11.1 -17.9 24 2 B V - 0 0 90 2,-0.0 2,-0.7 -11,-0.0 0, 0.0 -0.997 360.0-136.1-128.5 127.9 1.6 -10.6 -17.1 25 3 B N + 0 0 84 -2,-0.4 2,-0.2 -15,-0.1 -13,-0.2 -0.747 58.4 114.6 -81.5 112.7 0.1 -7.7 -15.1 26 4 B Q B S-A 11 0A 63 -15,-0.7 -15,-1.5 -2,-0.7 2,-0.3 -0.890 71.5 -58.5-158.5-179.1 -2.3 -9.3 -12.6 27 5 B H - 0 0 107 -2,-0.2 2,-0.3 -17,-0.2 -20,-0.2 -0.655 54.2-175.5 -75.2 136.1 -3.1 -10.1 -9.0 28 6 B L + 0 0 8 -22,-2.3 2,-0.3 -19,-0.3 -19,-0.1 -0.999 10.2 159.5-143.7 133.9 -0.3 -12.0 -7.3 29 7 B b > - 0 0 58 -2,-0.3 3,-1.3 -22,-0.1 4,-0.2 -0.992 52.5 -18.3-157.0 146.4 -0.0 -13.5 -3.7 30 8 B G T >> S+ 0 0 47 -2,-0.3 4,-2.4 1,-0.3 3,-0.6 -0.286 131.9 4.7 58.7-127.3 2.0 -16.2 -1.8 31 9 B S H 3> S+ 0 0 92 1,-0.2 4,-2.7 2,-0.2 -1,-0.3 0.885 134.1 55.6 -56.3 -38.1 3.7 -18.7 -4.2 32 10 B H H <> S+ 0 0 103 -3,-1.3 4,-2.1 2,-0.2 -1,-0.2 0.861 109.3 47.2 -62.7 -35.1 2.5 -16.7 -7.2 33 11 B L H <> S+ 0 0 11 -3,-0.6 4,-2.6 2,-0.2 -2,-0.2 0.916 111.0 50.1 -74.1 -42.2 4.2 -13.6 -5.8 34 12 B V H X S+ 0 0 107 -4,-2.4 4,-1.8 2,-0.2 -2,-0.2 0.901 110.8 51.8 -59.8 -41.8 7.4 -15.6 -5.0 35 13 B E H X S+ 0 0 115 -4,-2.7 4,-2.0 2,-0.2 -2,-0.2 0.943 109.3 48.6 -58.8 -49.7 7.2 -16.8 -8.7 36 14 B A H X S+ 0 0 4 -4,-2.1 4,-2.7 1,-0.2 5,-0.3 0.940 108.2 53.7 -58.6 -47.0 6.9 -13.2 -10.0 37 15 B L H X>S+ 0 0 39 -4,-2.6 4,-2.3 1,-0.2 5,-2.0 0.854 107.9 52.3 -57.2 -35.1 9.9 -12.0 -7.8 38 16 B Y H <>S+ 0 0 107 -4,-1.8 5,-3.0 3,-0.2 6,-0.3 0.938 111.5 46.2 -62.5 -45.1 11.9 -14.9 -9.5 39 17 B L H <5S+ 0 0 97 -4,-2.0 -2,-0.2 3,-0.2 5,-0.2 0.928 121.8 34.7 -66.0 -47.0 10.9 -13.6 -13.0 40 18 B V H <5S- 0 0 12 -4,-2.7 -1,-0.2 -5,-0.1 -2,-0.2 0.869 143.6 -2.3 -73.0 -40.6 11.6 -9.9 -12.4 41 19 B c T <5S+ 0 0 39 -4,-2.3 4,-0.3 -5,-0.3 -3,-0.2 0.705 120.1 62.8-127.1 -36.8 14.7 -10.2 -10.0 42 20 B G T > >