==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-MAY-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 29-DEC-12 2M2N . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.ZAKOVA,V.VEVERKA,J.JIRACEK . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3706.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 58.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 7.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 29.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 106 0, 0.0 3,-1.8 0, 0.0 4,-0.3 0.000 360.0 360.0 360.0 152.8 -10.4 3.3 0.3 2 2 A I T >> + 0 0 16 1,-0.3 4,-3.0 2,-0.2 3,-1.8 0.782 360.0 61.8 -49.4 -41.0 -6.7 2.8 -0.6 3 3 A V H 3> S+ 0 0 76 1,-0.3 4,-1.0 2,-0.2 5,-0.5 0.774 92.7 66.3 -61.3 -28.4 -7.3 1.3 -4.1 4 4 A E H <4 S+ 0 0 161 -3,-1.8 -1,-0.3 1,-0.1 -2,-0.2 0.631 122.1 15.2 -71.4 -15.0 -9.0 4.6 -5.3 5 5 A Q H <> S+ 0 0 82 -3,-1.8 4,-2.1 -4,-0.3 -2,-0.2 0.662 128.8 45.9-119.2 -46.9 -5.6 6.5 -4.9 6 6 A a H < S+ 0 0 0 -4,-3.0 5,-0.3 1,-0.2 -3,-0.2 0.362 115.9 41.8-101.0 3.3 -2.8 3.9 -4.7 7 7 A b T < S+ 0 0 34 -4,-1.0 -1,-0.2 -5,-0.3 -3,-0.1 0.522 123.3 40.2-103.9 -21.2 -3.7 1.5 -7.5 8 8 A T T 4 S- 0 0 92 -5,-0.5 -2,-0.2 2,-0.0 2,-0.2 0.742 132.9 -3.8 -93.8 -31.6 -4.6 4.4 -9.9 9 9 A S S < S- 0 0 59 -4,-2.1 2,-0.4 17,-0.1 19,-0.2 -0.567 101.0 -37.9-143.8-158.8 -1.8 6.8 -8.9 10 10 A I - 0 0 62 -2,-0.2 2,-0.4 17,-0.2 17,-0.2 -0.643 35.2-163.0 -88.5 126.4 1.2 7.1 -6.5 11 11 A a B -A 26 0A 0 15,-0.8 15,-0.6 -2,-0.4 2,-0.3 -0.882 17.4-171.0 -91.9 134.8 1.3 5.9 -2.8 12 12 A S >> - 0 0 10 -2,-0.4 4,-2.9 13,-0.1 3,-1.7 -0.855 38.5 -94.3-123.7 162.3 4.2 7.4 -0.9 13 13 A L H 3> S+ 0 0 101 -2,-0.3 4,-2.1 1,-0.3 5,-0.1 0.794 122.2 50.1 -46.8 -43.7 5.6 6.6 2.7 14 14 A Y H 34 S+ 0 0 145 2,-0.2 -1,-0.3 1,-0.2 4,-0.2 0.733 117.6 40.5 -72.9 -23.4 3.5 9.4 4.5 15 15 A Q H X4 S+ 0 0 60 -3,-1.7 3,-1.2 2,-0.1 4,-0.3 0.864 112.9 54.4 -86.6 -43.5 0.3 8.2 2.8 16 16 A L H >< S+ 0 0 0 -4,-2.9 3,-1.7 1,-0.3 -2,-0.2 0.836 98.3 64.9 -56.5 -36.8 1.1 4.5 3.2 17 17 A E G >< S+ 0 0 128 -4,-2.1 3,-1.5 -5,-0.3 -1,-0.3 0.793 87.4 69.7 -60.3 -27.5 1.6 5.0 7.0 18 18 A N G < S+ 0 0 101 -3,-1.2 -1,-0.3 1,-0.3 -2,-0.2 0.708 100.8 47.1 -63.7 -19.8 -2.1 5.8 7.2 19 19 A Y G < S+ 0 0 37 -3,-1.7 28,-1.0 -4,-0.3 29,-0.3 0.302 86.1 116.1-104.8 4.7 -2.9 2.1 6.5 20 20 A c B < B 46 0B 18 -3,-1.5 26,-0.2 -4,-0.2 18,-0.0 -0.457 360.0 360.0 -68.1 146.4 -0.3 0.9 9.1 21 21 A N 0 0 107 24,-1.4 -1,-0.1 -2,-0.1 25,-0.1 -0.081 360.0 360.0 -61.0 360.0 -1.9 -1.1 12.0 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 96 0, 0.0 2,-0.3 0, 0.0 9,-0.0 0.000 360.0 360.0 360.0 173.6 11.0 0.6 -2.9 24 2 B V - 0 0 107 -12,-0.0 2,-0.0 0, 0.0 12,-0.0 -0.981 360.0 -85.0-133.6 144.6 10.6 4.1 -4.5 25 3 B N S S+ 0 0 75 -2,-0.3 2,-0.2 -15,-0.1 -13,-0.1 -0.267 74.0 124.7 -53.4 121.6 7.5 6.3 -5.0 26 4 B Q B S-A 11 0A 75 -15,-0.6 2,-2.2 -17,-0.1 -15,-0.8 -0.919 73.8 -54.0-164.7 178.1 5.7 5.1 -8.2 27 5 B H S S+ 0 0 136 -2,-0.2 -17,-0.2 -17,-0.2 -21,-0.1 -0.464 70.3 178.3 -73.8 71.7 2.4 3.9 -9.7 28 6 B L + 0 0 3 -2,-2.2 2,-0.2 -19,-0.2 -19,-0.0 -0.122 10.2 163.3 -60.6 167.2 2.0 0.9 -7.2 29 7 B b >> - 0 0 62 -21,-0.1 3,-1.1 -19,-0.0 4,-0.6 -0.805 50.0 -17.4-177.4 153.6 -0.9 -1.6 -7.0 30 8 B G H 3> S+ 0 0 16 1,-0.2 4,-2.6 2,-0.2 3,-0.2 -0.186 130.0 10.9 59.6-123.7 -1.7 -5.1 -5.5 31 9 B S H 3> S+ 0 0 91 1,-0.2 4,-2.8 2,-0.2 -1,-0.2 0.930 132.5 51.4 -54.4 -49.0 1.5 -7.0 -4.5 32 10 B H H <> S+ 0 0 80 -3,-1.1 4,-2.3 2,-0.2 -1,-0.2 0.860 111.6 48.8 -58.4 -35.6 3.8 -3.9 -5.0 33 11 B L H X S+ 0 0 0 -4,-0.6 4,-2.9 2,-0.2 -2,-0.2 0.928 111.4 48.6 -71.0 -43.5 1.3 -1.9 -2.7 34 12 B V H X S+ 0 0 36 -4,-2.6 4,-2.3 2,-0.2 -2,-0.2 0.896 113.5 48.2 -59.1 -43.0 1.4 -4.7 -0.0 35 13 B E H X S+ 0 0 116 -4,-2.8 4,-2.5 2,-0.2 -2,-0.2 0.919 112.5 47.9 -63.8 -46.1 5.2 -4.7 -0.3 36 14 B A H X S+ 0 0 0 -4,-2.3 4,-2.5 2,-0.2 5,-0.2 0.947 111.7 49.8 -60.6 -49.3 5.4 -0.9 0.0 37 15 B L H X S+ 0 0 1 -4,-2.9 4,-3.0 1,-0.2 5,-0.3 0.909 112.7 47.8 -56.3 -44.5 3.0 -1.0 3.0 38 16 B Y H X S+ 0 0 112 -4,-2.3 4,-2.2 2,-0.2 -1,-0.2 0.905 111.7 49.5 -63.0 -42.2 5.2 -3.7 4.7 39 17 B L H < S+ 0 0 99 -4,-2.5 -2,-0.2 2,-0.2 -1,-0.2 0.844 118.6 39.8 -69.1 -32.4 8.4 -1.7 4.0 40 18 B V H < S+ 0 0 37 -4,-2.5 -2,-0.2 -5,-0.2 -3,-0.2 0.948 123.9 36.8 -73.6 -56.5 6.8 1.5 5.5 41 19 B c H >< S- 0 0 13 -4,-3.0 3,-0.5 -5,-0.2 -3,-0.2 0.736 99.4-152.0 -74.2 -26.1 4.9 -0.1 8.5 42 20 B G G >< - 0 0 28 -4,-2.2 3,-1.4 -5,-0.3 -1,-0.2 -0.392 54.7 -24.1 83.9-161.6 7.7 -2.7 9.3 43 21 B E G 3 S+ 0 0 187 1,-0.3 -1,-0.2 -2,-0.1 -4,-0.1 0.645 120.2 84.8 -59.1 -16.8 7.2 -6.2 10.9 44 22 B R G < S- 0 0 159 -3,-0.5 -1,-0.3 -6,-0.1 -2,-0.1 0.854 87.3-146.7 -49.2 -46.4 4.0 -4.8 12.5 45 23 B G < - 0 0 25 -3,-1.4 -24,-1.4 -7,-0.2 2,-0.3 -0.093 4.6-114.7 85.9 169.9 1.9 -5.6 9.3 46 24 B H B -B 20 0B 30 -26,-0.2 -26,-0.2 2,-0.1 -8,-0.0 -0.893 13.0-120.3-144.1 162.5 -1.1 -3.8 7.7 47 25 B F S S+ 0 0 137 -28,-1.0 2,-0.9 -2,-0.3 -27,-0.1 0.674 84.2 91.0 -88.3 -19.5 -4.9 -4.4 7.0 48 26 B Y + 0 0 29 -29,-0.3 -2,-0.1 -15,-0.1 -11,-0.1 -0.694 42.9 149.0 -79.5 104.8 -4.9 -4.1 3.1 49 27 B T - 0 0 105 -2,-0.9 -18,-0.1 -15,-0.0 2,-0.0 -0.888 31.2-155.5-135.8 100.0 -4.3 -7.6 1.7 50 28 B P - 0 0 50 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.262 22.3 -95.7 -77.8 163.1 -6.1 -8.1 -1.7 51 29 B K 0 0 210 -2,-0.0 -21,-0.0 -21,-0.0 0, 0.0 -0.606 360.0 360.0 -71.7 135.3 -7.4 -11.2 -3.5 52 30 B T 0 0 196 -2,-0.3 -22,-0.0 -22,-0.1 0, 0.0 -0.944 360.0 360.0-139.9 360.0 -4.9 -12.7 -6.1