==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-MAY-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 29-DEC-12 2M2O . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.ZAKOVA,V.VEVERKA,J.JIRACEK . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4374.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 56.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 15.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 35.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G >> 0 0 66 0, 0.0 4,-2.5 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 177.7 -1.6 -2.3 -1.1 2 2 A I H 3> + 0 0 47 1,-0.2 4,-2.7 2,-0.2 5,-0.3 0.831 360.0 55.5 -55.4 -40.9 -0.5 -0.1 -4.1 3 3 A V H 3> S+ 0 0 77 2,-0.2 4,-1.0 1,-0.2 -1,-0.2 0.894 114.6 39.8 -61.9 -41.8 -3.1 2.7 -3.5 4 4 A E H X> S+ 0 0 130 -3,-0.6 4,-2.5 2,-0.2 3,-0.6 0.975 115.8 51.0 -68.8 -54.1 -1.9 3.2 0.1 5 5 A Q H 3X S+ 0 0 109 -4,-2.5 4,-1.4 1,-0.3 -2,-0.2 0.862 117.5 37.8 -54.4 -45.8 1.8 2.8 -0.8 6 6 A a H 3< S+ 0 0 0 -4,-2.7 22,-2.9 -5,-0.2 5,-0.3 0.619 119.7 46.2 -87.5 -13.5 1.8 5.4 -3.6 7 7 A b H << S+ 0 0 52 -4,-1.0 -2,-0.2 -3,-0.6 -1,-0.2 0.671 119.5 39.6 -98.4 -20.1 -0.7 7.9 -2.0 8 8 A T H < S+ 0 0 100 -4,-2.5 2,-0.3 1,-0.2 -2,-0.2 0.724 129.9 21.5 -94.2 -26.9 1.2 7.8 1.5 9 9 A S S < S- 0 0 66 -4,-1.4 19,-0.4 -5,-0.4 -1,-0.2 -0.901 97.2 -81.5-135.8 162.6 4.7 7.8 -0.1 10 10 A I - 0 0 70 -2,-0.3 2,-0.4 17,-0.1 17,-0.2 -0.401 35.3-164.9 -67.6 139.4 6.3 8.7 -3.5 11 11 A a - 0 0 2 15,-1.5 15,-0.3 -5,-0.3 2,-0.1 -0.948 3.6-166.3-125.5 111.5 6.0 6.3 -6.5 12 12 A S >> - 0 0 23 -2,-0.4 4,-2.6 13,-0.1 3,-1.5 -0.364 43.6 -98.2 -72.9 170.0 8.3 6.9 -9.5 13 13 A L H 3> S+ 0 0 48 1,-0.3 4,-2.0 2,-0.2 5,-0.2 0.858 126.9 62.9 -57.7 -31.0 7.7 5.1 -12.9 14 14 A Y H 34 S+ 0 0 178 2,-0.2 -1,-0.3 1,-0.2 4,-0.2 0.684 111.3 36.8 -68.5 -20.8 10.5 2.7 -11.7 15 15 A Q H X> S+ 0 0 84 -3,-1.5 3,-1.0 2,-0.1 4,-0.6 0.844 113.5 54.7 -93.4 -48.3 8.1 1.7 -8.7 16 16 A L H >< S+ 0 0 0 -4,-2.6 3,-0.8 1,-0.2 4,-0.4 0.804 97.9 64.9 -58.6 -35.3 4.7 1.8 -10.5 17 17 A E G >< S+ 0 0 100 -4,-2.0 3,-1.2 1,-0.2 4,-0.4 0.844 93.7 60.9 -60.5 -33.1 5.9 -0.6 -13.3 18 18 A N G X4 S+ 0 0 95 -3,-1.0 3,-1.0 1,-0.2 -1,-0.2 0.849 97.3 59.5 -61.7 -36.0 6.3 -3.5 -10.7 19 19 A Y G << S+ 0 0 97 -3,-0.8 -1,-0.2 -4,-0.6 -2,-0.2 0.590 90.1 69.8 -75.1 -11.3 2.5 -3.3 -9.9 20 20 A c G < 0 0 39 -3,-1.2 -1,-0.2 -4,-0.4 -2,-0.2 0.757 360.0 360.0 -73.8 -25.1 1.5 -4.1 -13.5 21 21 A N < 0 0 192 -3,-1.0 -3,-0.0 -4,-0.4 0, 0.0 -0.481 360.0 360.0 -69.6 360.0 2.8 -7.7 -13.1 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 132 0, 0.0 2,-0.3 0, 0.0 -11,-0.1 0.000 360.0 360.0 360.0 158.4 8.1 11.6 -15.3 24 2 B V - 0 0 94 2,-0.0 2,-0.1 0, 0.0 0, 0.0 -0.989 360.0 -89.1-145.7 145.8 8.7 13.6 -12.1 25 3 B N + 0 0 117 -2,-0.3 2,-0.3 -15,-0.1 -13,-0.1 -0.281 62.4 136.9 -62.7 130.6 8.5 12.4 -8.5 26 4 B Q - 0 0 84 -15,-0.3 -15,-1.5 -2,-0.1 2,-0.2 -0.982 54.8-102.2-162.8 153.1 5.1 12.7 -6.8 27 5 B H - 0 0 102 -2,-0.3 2,-0.3 -17,-0.2 -20,-0.2 -0.600 43.1-159.2 -71.6 145.0 2.5 11.0 -4.6 28 6 B L - 0 0 13 -22,-2.9 2,-0.3 -19,-0.4 -19,-0.1 -0.994 13.1-179.3-139.7 139.0 -0.4 9.5 -6.6 29 7 B b >> - 0 0 56 -2,-0.3 4,-1.4 -22,-0.1 3,-1.0 -0.939 48.4 -31.4-136.2 154.2 -4.0 8.4 -5.8 30 8 B G H 3> S+ 0 0 47 -2,-0.3 4,-2.4 1,-0.2 5,-0.2 -0.020 126.7 5.3 49.4-123.9 -7.1 6.9 -7.5 31 9 B S H 3> S+ 0 0 73 2,-0.2 4,-2.1 1,-0.2 5,-0.2 0.871 132.7 54.7 -62.8 -38.3 -7.4 7.7 -11.2 32 10 B H H <> S+ 0 0 136 -3,-1.0 4,-1.7 1,-0.2 -2,-0.2 0.902 112.9 44.2 -61.6 -40.2 -4.0 9.6 -11.3 33 11 B L H X S+ 0 0 7 -4,-1.4 4,-1.9 2,-0.2 5,-0.2 0.917 112.2 49.5 -70.5 -46.8 -2.3 6.4 -9.9 34 12 B V H X S+ 0 0 89 -4,-2.4 4,-1.5 1,-0.2 -2,-0.2 0.889 114.4 45.7 -67.5 -36.5 -4.1 3.9 -12.2 35 13 B E H X S+ 0 0 111 -4,-2.1 4,-2.4 2,-0.2 -1,-0.2 0.909 109.5 55.5 -68.5 -41.2 -3.3 5.9 -15.3 36 14 B A H X S+ 0 0 13 -4,-1.7 4,-1.5 -5,-0.2 -2,-0.2 0.879 111.5 42.8 -63.2 -37.2 0.4 6.5 -14.2 37 15 B L H X S+ 0 0 31 -4,-1.9 4,-1.6 2,-0.2 -1,-0.2 0.825 113.6 52.4 -79.8 -28.6 1.0 2.7 -13.9 38 16 B Y H X>S+ 0 0 121 -4,-1.5 4,-2.4 -5,-0.2 5,-0.6 0.888 108.6 51.9 -65.7 -38.4 -0.9 2.0 -17.2 39 17 B L H <5S+ 0 0 126 -4,-2.4 -2,-0.2 2,-0.2 -1,-0.2 0.890 112.8 42.1 -71.8 -41.3 1.4 4.6 -19.0 40 18 B V H <5S+ 0 0 51 -4,-1.5 -1,-0.2 -5,-0.2 -2,-0.2 0.851 119.7 45.4 -71.5 -34.5 4.7 3.1 -17.8 41 19 B c H <5S- 0 0 48 -4,-1.6 -2,-0.2 2,-0.2 -1,-0.2 0.840 91.6-145.8 -77.3 -34.9 3.5 -0.5 -18.4 42 20 B G T <5 + 0 0 67 -4,-2.4 2,-0.3 1,-0.2 -3,-0.1 0.651 68.2 94.2 73.3 17.3 1.9 0.2 -21.9 43 21 B E < - 0 0 111 -5,-0.6 -1,-0.2 1,-0.1 -2,-0.2 -0.996 67.6-142.5-145.2 142.5 -0.9 -2.4 -21.1 44 22 B R - 0 0 191 -2,-0.3 -1,-0.1 1,-0.1 -6,-0.1 0.773 27.6-160.7 -75.1 -33.9 -4.4 -2.1 -19.6 45 23 B G + 0 0 21 -7,-0.1 -1,-0.1 1,-0.1 -25,-0.0 -0.219 55.5 97.3 64.0-168.7 -4.8 -5.3 -17.4 46 24 B X + 0 0 65 1,-0.1 3,-0.1 3,-0.0 -1,-0.1 0.947 58.6 177.8 57.9 54.8 -8.3 -6.5 -16.4 47 25 B F - 0 0 98 1,-0.2 -1,-0.1 2,-0.2 4,-0.0 -0.169 43.2 -53.0 -78.4 175.0 -8.7 -9.2 -19.2 48 26 B Y S S+ 0 0 235 1,-0.2 -1,-0.2 2,-0.1 -2,-0.0 -0.297 130.3 15.4 -54.5 131.1 -11.5 -11.7 -19.8 49 27 B T S S- 0 0 122 -3,-0.1 -1,-0.2 1,-0.1 -2,-0.2 0.999 103.5-122.7 51.9 80.0 -12.2 -13.5 -16.5 50 28 B P - 0 0 90 0, 0.0 -2,-0.1 0, 0.0 -1,-0.1 -0.142 26.0-167.4 -53.4 140.2 -10.3 -11.1 -14.2 51 29 B K 0 0 173 -3,-0.0 -3,-0.0 -4,-0.0 -2,-0.0 0.433 360.0 360.0-108.6 -5.1 -7.4 -12.6 -12.1 52 30 B T 0 0 175 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.615 360.0 360.0-133.7 360.0 -6.7 -9.6 -9.6