==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 27-JUN-02 1M36 . COMPND 2 MOLECULE: MONOCYTIC LEUKEMIA ZINC FINGER PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.H.Y.KWAN,D.A.GELL,C.K.LIEW,J.P.MACKAY . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3199.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 24.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 133 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-135.0 17.0 -17.6 -1.1 2 2 A S - 0 0 109 2,-0.1 0, 0.0 0, 0.0 0, 0.0 0.576 360.0-135.6 -93.0 -13.0 16.1 -14.9 1.3 3 3 A R + 0 0 238 1,-0.2 0, 0.0 0, 0.0 0, 0.0 0.829 51.0 151.7 59.5 35.8 13.0 -16.8 2.4 4 4 A L - 0 0 123 2,-0.0 2,-0.4 0, 0.0 -1,-0.2 -0.868 42.6-135.9-101.9 113.2 11.0 -13.5 2.2 5 5 A P - 0 0 96 0, 0.0 2,-0.7 0, 0.0 0, 0.0 -0.552 15.6-131.0 -71.4 122.3 7.3 -14.1 1.4 6 6 A K - 0 0 170 -2,-0.4 2,-0.1 1,-0.0 10,-0.0 -0.651 31.8-168.9 -76.6 112.6 6.0 -11.7 -1.2 7 7 A L - 0 0 44 -2,-0.7 2,-1.1 1,-0.1 11,-0.2 -0.254 37.7 -73.2 -94.5-176.2 2.8 -10.2 0.1 8 8 A Y E -A 17 0A 107 9,-2.5 9,-3.4 -2,-0.1 2,-0.4 -0.719 53.7-154.6 -85.9 96.0 0.1 -8.1 -1.5 9 9 A L E -A 16 0A 58 -2,-1.1 7,-0.2 7,-0.2 2,-0.2 -0.626 9.4-131.0 -78.0 130.6 1.8 -4.7 -1.9 10 10 A C - 0 0 0 5,-2.4 -1,-0.0 -2,-0.4 13,-0.0 -0.470 6.6-151.6 -75.1 142.7 -0.4 -1.6 -2.1 11 11 A E S S+ 0 0 154 -2,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.303 89.9 52.3 -99.1 4.9 0.5 0.7 -5.0 12 12 A F S S+ 0 0 90 3,-0.1 -1,-0.1 0, 0.0 15,-0.0 0.794 134.4 0.9-107.8 -46.8 -0.7 3.8 -3.2 13 13 A C S S- 0 0 41 2,-0.1 -2,-0.1 0, 0.0 -4,-0.0 0.486 97.6-123.7-119.2 -8.8 1.0 3.7 0.2 14 14 A L + 0 0 108 1,-0.2 2,-0.3 -5,-0.0 -3,-0.1 0.988 50.7 153.0 62.9 72.3 3.0 0.5 -0.4 15 15 A K - 0 0 104 -7,-0.1 -5,-2.4 -8,-0.0 2,-0.9 -0.869 47.1-113.3-123.2 156.2 2.0 -1.8 2.4 16 16 A Y E -A 9 0A 122 -2,-0.3 -7,-0.2 -7,-0.2 2,-0.2 -0.798 31.1-163.7 -96.4 106.4 2.0 -5.6 2.5 17 17 A M E -A 8 0A 32 -9,-3.4 -9,-2.5 -2,-0.9 3,-0.1 -0.559 16.1-142.4 -86.2 147.8 -1.5 -7.0 2.8 18 18 A K S S+ 0 0 152 -2,-0.2 2,-0.4 -11,-0.2 -1,-0.1 0.844 82.4 35.6 -79.7 -37.8 -1.9 -10.6 3.8 19 19 A S > - 0 0 39 1,-0.1 4,-2.2 -11,-0.1 -1,-0.1 -0.917 69.5-135.2-120.1 150.0 -4.9 -11.4 1.5 20 20 A R H > S+ 0 0 135 -2,-0.4 4,-2.5 2,-0.2 5,-0.1 0.895 110.1 55.3 -65.3 -38.2 -5.9 -10.2 -1.9 21 21 A T H > S+ 0 0 85 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.936 109.7 44.8 -59.1 -48.1 -9.4 -9.6 -0.7 22 22 A I H > S+ 0 0 71 1,-0.2 4,-2.8 2,-0.2 -1,-0.2 0.878 110.5 55.4 -65.7 -35.7 -8.1 -7.4 2.1 23 23 A L H X S+ 0 0 12 -4,-2.2 4,-2.5 2,-0.2 -2,-0.2 0.911 105.8 52.0 -63.2 -39.8 -5.9 -5.6 -0.4 24 24 A Q H X S+ 0 0 64 -4,-2.5 4,-0.8 2,-0.2 -2,-0.2 0.926 111.2 46.7 -62.0 -43.5 -8.9 -4.9 -2.6 25 25 A Q H >X S+ 0 0 120 -4,-2.0 4,-1.4 1,-0.2 3,-0.8 0.915 112.8 50.0 -63.6 -41.7 -10.7 -3.4 0.5 26 26 A H H 3X S+ 0 0 33 -4,-2.8 4,-3.1 1,-0.2 5,-0.3 0.854 102.2 61.8 -63.7 -36.6 -7.5 -1.4 1.3 27 27 A M H 3< S+ 0 0 42 -4,-2.5 -1,-0.2 1,-0.2 -2,-0.2 0.748 101.7 53.0 -67.1 -19.3 -7.4 -0.2 -2.4 28 28 A K H << S+ 0 0 135 -4,-0.8 3,-0.4 -3,-0.8 -1,-0.2 0.923 111.5 44.7 -77.4 -43.2 -10.7 1.5 -1.7 29 29 A K H >< S+ 0 0 119 -4,-1.4 3,-1.0 1,-0.2 -2,-0.2 0.900 118.3 42.8 -63.9 -45.0 -9.3 3.3 1.3 30 30 A C T 3< S+ 0 0 15 -4,-3.1 -1,-0.2 1,-0.2 -2,-0.2 0.488 110.3 60.2 -82.5 -2.1 -6.1 4.2 -0.5 31 31 A G T 3 + 0 0 24 -3,-0.4 2,-1.8 -5,-0.3 -1,-0.2 0.262 69.4 109.2-107.7 11.8 -8.2 5.1 -3.5 32 32 A W < 0 0 208 -3,-1.0 -1,-0.1 1,-0.2 -3,-0.1 -0.406 360.0 360.0 -85.1 61.0 -10.2 7.8 -1.7 33 33 A F 0 0 216 -2,-1.8 -1,-0.2 0, 0.0 -2,-0.1 0.373 360.0 360.0-139.9 360.0 -8.5 10.6 -3.6