==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-OCT-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSFERASE 07-FEB-13 2M4K . COMPND 2 MOLECULE: DNA-DIRECTED RNA POLYMERASE SUBUNIT DELTA; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS SUBSP. SUBTILIS; . AUTHOR V.PAPOUSKOVA,J.NOVACEK,P.KADERAVEK,L.ZIDEK,A.RABATINOVA,H.SA . 81 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4936.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 65.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 12.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 40.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A G 0 0 61 0, 0.0 20,-0.1 0, 0.0 21,-0.1 0.000 360.0 360.0 360.0 46.7 -10.7 7.1 -0.3 2 3 A I + 0 0 0 19,-0.1 3,-0.3 3,-0.1 20,-0.1 0.447 360.0 62.5-138.2 -10.8 -7.2 6.8 -1.5 3 4 A K S S+ 0 0 113 1,-0.2 7,-0.1 40,-0.0 0, 0.0 0.780 88.8 68.3 -93.6 -27.8 -6.9 9.0 -4.6 4 5 A Q S S+ 0 0 155 2,-0.0 -1,-0.2 0, 0.0 2,-0.2 0.592 84.2 99.7 -67.4 -8.8 -7.6 12.3 -2.9 5 6 A Y S S- 0 0 79 -3,-0.3 2,-0.1 1,-0.1 -3,-0.1 -0.494 70.9-127.2 -85.2 149.3 -4.3 12.0 -1.0 6 7 A S > - 0 0 69 -2,-0.2 4,-2.8 37,-0.1 5,-0.2 -0.260 33.7 -91.5 -84.6 176.0 -1.1 13.7 -2.1 7 8 A Q H > S+ 0 0 95 2,-0.2 4,-1.7 1,-0.2 38,-0.1 0.928 125.1 33.6 -60.6 -52.9 2.3 12.1 -2.7 8 9 A E H > S+ 0 0 147 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.825 116.7 58.8 -73.6 -29.2 3.8 12.4 0.8 9 10 A E H 4 S+ 0 0 84 1,-0.2 -2,-0.2 2,-0.2 -1,-0.2 0.883 108.6 43.1 -67.6 -42.6 0.4 11.9 2.2 10 11 A L H >< S+ 0 0 1 -4,-2.8 3,-1.2 1,-0.2 -1,-0.2 0.822 106.7 64.2 -71.0 -34.7 0.1 8.5 0.5 11 12 A K H 3< S+ 0 0 82 -4,-1.7 -2,-0.2 1,-0.3 -1,-0.2 0.887 103.6 46.0 -55.9 -42.2 3.7 7.7 1.5 12 13 A E T 3< S+ 0 0 163 -4,-1.6 -1,-0.3 -5,-0.1 2,-0.2 0.394 90.0 107.3 -89.4 5.8 2.7 7.8 5.2 13 14 A M S < S- 0 0 44 -3,-1.2 2,-0.2 -5,-0.1 -3,-0.0 -0.592 85.4 -99.5 -78.9 143.2 -0.4 5.7 4.6 14 15 A A > - 0 0 49 -2,-0.2 4,-2.3 1,-0.1 3,-0.2 -0.470 29.7-131.1 -66.0 133.3 -0.1 2.1 5.9 15 16 A L H > S+ 0 0 15 1,-0.2 4,-1.8 2,-0.2 -1,-0.1 0.861 104.7 45.7 -59.2 -42.3 0.7 -0.2 3.0 16 17 A V H > S+ 0 0 8 1,-0.2 4,-2.4 2,-0.2 -1,-0.2 0.846 112.1 54.3 -71.1 -28.3 -2.0 -2.8 3.6 17 18 A E H > S+ 0 0 57 -3,-0.2 4,-2.2 2,-0.2 -2,-0.2 0.899 104.7 52.7 -72.1 -39.0 -4.5 -0.0 4.2 18 19 A I H X S+ 0 0 1 -4,-2.3 4,-2.4 1,-0.2 -2,-0.2 0.943 111.3 47.6 -58.0 -47.3 -3.7 1.5 0.8 19 20 A A H X S+ 0 0 0 -4,-1.8 4,-1.9 1,-0.2 -2,-0.2 0.890 107.2 56.8 -61.3 -42.2 -4.4 -1.9 -0.7 20 21 A H H X S+ 0 0 41 -4,-2.4 4,-1.6 1,-0.2 -1,-0.2 0.928 112.1 41.5 -53.6 -47.1 -7.6 -2.2 1.3 21 22 A E H X S+ 0 0 59 -4,-2.2 4,-1.7 1,-0.2 -1,-0.2 0.865 108.7 60.6 -71.0 -36.5 -8.9 1.0 -0.2 22 23 A L H X S+ 0 0 2 -4,-2.4 4,-2.5 1,-0.2 -1,-0.2 0.848 105.2 49.5 -57.8 -38.1 -7.5 0.0 -3.6 23 24 A F H X S+ 0 0 0 -4,-1.9 4,-3.1 2,-0.2 5,-0.4 0.876 110.1 47.5 -75.0 -37.5 -9.8 -3.0 -3.5 24 25 A E H < S+ 0 0 71 -4,-1.6 -2,-0.2 2,-0.2 -1,-0.2 0.727 113.2 52.4 -73.0 -21.1 -12.9 -1.0 -2.6 25 26 A E H < S+ 0 0 61 -4,-1.7 -2,-0.2 -5,-0.2 -1,-0.2 0.932 119.3 32.1 -72.0 -52.4 -12.0 1.3 -5.4 26 27 A H H < S- 0 0 65 -4,-2.5 -2,-0.2 2,-0.2 -3,-0.2 0.884 84.8-155.4 -75.1 -38.5 -11.6 -1.4 -8.0 27 28 A K < + 0 0 135 -4,-3.1 -3,-0.1 1,-0.3 -4,-0.1 0.740 66.4 97.9 61.1 29.2 -14.4 -3.7 -6.6 28 29 A K S S- 0 0 135 -5,-0.4 -1,-0.3 0, 0.0 2,-0.2 -0.976 86.0-105.8-142.9 142.4 -12.4 -6.3 -8.3 29 30 A P - 0 0 42 0, 0.0 47,-0.2 0, 0.0 45,-0.1 -0.550 40.4-158.1 -68.5 138.2 -9.8 -8.8 -7.1 30 31 A V E -A 75 0A 11 45,-1.8 45,-2.5 -2,-0.2 -7,-0.0 -0.978 15.4-115.7-127.6 131.7 -6.4 -7.7 -8.3 31 32 A P E > -A 74 0A 35 0, 0.0 4,-2.6 0, 0.0 3,-0.2 -0.292 34.2-108.0 -58.3 153.7 -3.2 -9.8 -8.7 32 33 A F H > S+ 0 0 11 41,-0.8 4,-1.4 1,-0.2 5,-0.1 0.850 116.6 48.5 -56.0 -43.9 -0.3 -9.0 -6.5 33 34 A Q H > S+ 0 0 128 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.915 113.4 47.2 -65.9 -37.1 1.8 -7.5 -9.3 34 35 A E H > S+ 0 0 107 -3,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.901 106.0 55.1 -79.0 -37.8 -1.0 -5.3 -10.6 35 36 A L H X S+ 0 0 0 -4,-2.6 4,-2.4 1,-0.2 -1,-0.2 0.866 107.6 52.1 -62.6 -33.7 -2.1 -3.9 -7.2 36 37 A L H X S+ 0 0 2 -4,-1.4 4,-2.8 -5,-0.2 -1,-0.2 0.895 108.3 51.2 -68.2 -39.7 1.5 -2.7 -6.6 37 38 A N H X S+ 0 0 65 -4,-1.6 4,-2.0 2,-0.2 5,-0.2 0.923 109.8 50.1 -60.7 -44.7 1.4 -1.0 -10.0 38 39 A E H X S+ 0 0 74 -4,-2.4 4,-1.3 2,-0.2 -2,-0.2 0.933 114.4 44.3 -58.3 -50.4 -1.8 0.7 -9.0 39 40 A I H >X S+ 0 0 2 -4,-2.4 4,-1.9 2,-0.2 3,-0.7 0.964 111.7 50.8 -60.1 -56.7 -0.4 1.9 -5.7 40 41 A A H 3<>S+ 0 0 2 -4,-2.8 5,-0.8 1,-0.3 -1,-0.2 0.863 113.3 44.1 -54.8 -45.9 3.0 3.1 -7.0 41 42 A S H 3<5S+ 0 0 94 -4,-2.0 -1,-0.3 1,-0.2 -2,-0.2 0.739 106.1 61.3 -73.0 -25.9 1.5 5.2 -9.8 42 43 A L H <<5S+ 0 0 50 -4,-1.3 -1,-0.2 -3,-0.7 -2,-0.2 0.888 101.2 65.1 -65.9 -37.2 -1.2 6.6 -7.5 43 44 A L T <5S- 0 0 12 -4,-1.9 2,-0.4 -5,-0.1 -36,-0.1 -0.514 95.8-122.7 -77.5 151.2 1.7 8.0 -5.4 44 45 A G T 5S+ 0 0 52 -2,-0.2 2,-0.2 2,-0.0 -3,-0.1 -0.099 83.3 90.1 -86.2 39.6 3.8 10.6 -7.1 45 46 A V S > - 0 0 109 -2,-0.2 3,-1.0 1,-0.1 4,-0.8 -0.403 37.1-118.1 -76.9 157.8 8.9 5.7 -8.3 47 48 A K T 34 S+ 0 0 82 1,-0.2 4,-0.3 2,-0.2 3,-0.2 0.807 107.6 74.1 -67.6 -28.8 7.8 2.1 -7.9 48 49 A E T 3> S+ 0 0 122 1,-0.2 4,-1.5 2,-0.2 3,-0.3 0.760 89.5 58.8 -57.9 -28.8 11.2 1.3 -6.2 49 50 A E H X> S+ 0 0 52 -3,-1.0 4,-1.7 1,-0.3 3,-0.6 0.967 110.3 42.0 -62.5 -49.6 10.0 3.1 -3.0 50 51 A L H 3< S+ 0 0 7 -4,-0.8 -1,-0.3 1,-0.2 -2,-0.2 0.488 102.9 73.7 -77.0 -1.5 7.2 0.8 -2.9 51 52 A G H >> S+ 0 0 25 -3,-0.3 4,-1.7 2,-0.3 3,-0.6 0.900 97.6 44.4 -76.7 -44.3 9.8 -1.9 -3.8 52 53 A D H S+ 0 0 40 -3,-0.6 4,-1.7 2,-0.2 -1,-0.2 0.931 103.9 44.7 -69.8 -46.4 7.0 -4.8 -1.7 55 56 A A H >X S+ 0 0 58 -4,-1.7 4,-1.7 -3,-0.3 3,-0.6 0.970 117.6 43.5 -60.0 -50.0 9.1 -7.1 0.4 56 57 A Q H 3X S+ 0 0 87 -4,-1.9 4,-3.3 1,-0.2 5,-0.3 0.752 105.9 64.8 -68.5 -19.2 7.5 -5.7 3.5 57 58 A F H 3X S+ 0 0 1 -4,-0.9 4,-2.7 2,-0.2 5,-0.3 0.882 99.2 51.9 -73.0 -35.2 4.1 -5.9 1.8 58 59 A Y H < S+ 0 0 31 -4,-3.3 3,-1.3 1,-0.2 4,-0.4 0.887 114.5 52.1 -69.1 -41.7 2.4 -7.1 6.3 61 62 A L H >< S+ 0 0 3 -4,-2.7 3,-0.8 1,-0.3 -1,-0.2 0.861 107.6 53.2 -67.1 -33.2 -0.2 -8.4 3.9 62 63 A N T 3< S+ 0 0 106 -4,-1.7 -1,-0.3 -5,-0.3 -2,-0.2 0.465 108.5 50.2 -83.0 -1.9 0.2 -11.9 5.2 63 64 A I T < S+ 0 0 125 -3,-1.3 -1,-0.2 -4,-0.2 -2,-0.2 0.345 88.1 109.2-112.7 4.6 -0.4 -10.8 8.8 64 65 A D < - 0 0 35 -3,-0.8 -3,-0.0 -4,-0.4 0, 0.0 -0.295 57.8-150.7 -75.3 161.8 -3.6 -8.8 8.0 65 66 A G S S+ 0 0 47 3,-0.0 -1,-0.1 -2,-0.0 -3,-0.0 0.131 85.1 45.5-124.4 20.5 -7.0 -10.0 9.2 66 67 A R S S+ 0 0 75 10,-0.1 12,-2.1 12,-0.0 13,-0.4 0.511 87.5 98.4-129.3 -24.4 -9.5 -8.7 6.6 67 68 A F E -B 77 0A 9 10,-0.2 2,-0.4 -6,-0.2 10,-0.3 -0.096 55.3-151.2 -63.2 163.9 -7.8 -9.5 3.3 68 69 A L E -B 76 0A 53 8,-2.1 8,-1.1 10,-0.0 2,-0.8 -0.998 11.1-147.4-140.9 132.4 -8.5 -12.5 1.1 69 70 A A E -B 75 0A 54 -2,-0.4 6,-0.2 6,-0.2 8,-0.0 -0.916 26.6-178.2-100.3 103.4 -6.2 -14.3 -1.2 70 71 A L - 0 0 59 4,-3.3 -1,-0.2 -2,-0.8 5,-0.1 0.990 56.9 -15.4 -71.9 -82.0 -8.6 -15.4 -3.9 71 72 A S S S- 0 0 111 3,-0.2 -2,-0.1 4,-0.1 4,-0.0 0.948 125.5 -24.0-100.3 -63.3 -7.1 -17.5 -6.7 72 73 A D S S- 0 0 133 3,-0.0 -3,-0.0 0, 0.0 3,-0.0 0.641 130.4 -33.6-122.8 -19.1 -3.3 -17.6 -7.0 73 74 A Q S S+ 0 0 55 2,-0.0 -41,-0.8 -41,-0.0 2,-0.8 0.074 92.7 141.4 168.5 23.6 -2.3 -14.3 -5.4 74 75 A T E -A 31 0A 23 -43,-0.2 -4,-3.3 -42,-0.1 -3,-0.2 -0.771 38.6-158.1 -82.7 112.0 -5.3 -12.3 -6.4 75 76 A W E +AB 30 69A 29 -45,-2.5 -45,-1.8 -2,-0.8 2,-0.3 -0.445 28.8 127.2 -95.2 168.6 -6.0 -10.3 -3.3 76 77 A G E - B 0 68A 0 -8,-1.1 -8,-2.1 -47,-0.2 2,-0.4 -0.947 56.5 -60.6 175.9-155.1 -9.1 -8.6 -2.2 77 78 A L E > - B 0 67A 3 -2,-0.3 3,-0.8 -10,-0.3 -10,-0.2 -0.940 19.7-152.9-123.6 131.1 -11.3 -8.4 0.7 78 79 A R G > S+ 0 0 124 -12,-2.1 3,-1.5 -2,-0.4 -11,-0.1 0.622 85.9 88.9 -76.3 -7.0 -13.2 -11.2 2.2 79 80 A S G 3 S+ 0 0 86 -13,-0.4 -1,-0.2 1,-0.3 -12,-0.1 0.282 77.8 64.8 -72.6 7.8 -15.7 -8.6 3.3 80 81 A W G < 0 0 72 -3,-0.8 -1,-0.3 1,-0.0 -2,-0.1 0.655 360.0 360.0 -99.2 -23.0 -17.5 -9.1 0.0 81 82 A Y < 0 0 203 -3,-1.5 -1,-0.0 -4,-0.2 0, 0.0 -0.733 360.0 360.0-132.4 360.0 -18.6 -12.7 0.6