==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-AUG-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 11-FEB-13 2M4X . COMPND 2 MOLECULE: MU-THERAPHOTOXIN-HH2A; . SOURCE 2 ORGANISM_SCIENTIFIC: HAPLOPELMA SCHMIDTI; . AUTHOR A.GIBBS,M.FLINSPACH . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3283.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 238 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 112.0 2.5 0.1 -1.3 2 2 A a - 0 0 58 15,-0.0 2,-1.3 14,-0.0 14,-0.1 -0.994 360.0 -89.5-153.8 148.4 4.5 -3.0 -0.3 3 3 A L + 0 0 48 -2,-0.3 14,-1.2 1,-0.1 3,-0.1 -0.406 63.9 150.1 -61.3 93.4 4.0 -6.1 1.8 4 4 A E > + 0 0 77 -2,-1.3 3,-0.6 1,-0.3 2,-0.3 0.758 55.3 5.5 -90.9-102.1 5.3 -4.8 5.1 5 5 A I T 3 S- 0 0 61 1,-0.2 -1,-0.3 25,-0.1 27,-0.2 -0.682 137.5 -1.9 -90.2 140.8 3.8 -6.2 8.4 6 6 A F T 3 S+ 0 0 123 25,-2.4 2,-0.5 -2,-0.3 -1,-0.2 0.706 101.7 137.2 55.1 18.6 1.4 -9.2 8.3 7 7 A K < - 0 0 103 -3,-0.6 24,-2.3 24,-0.3 -1,-0.2 -0.848 58.4-117.8-101.0 128.8 1.8 -8.9 4.5 8 8 A A B -A 30 0A 70 -2,-0.5 2,-0.5 22,-0.2 22,-0.2 -0.302 25.7-145.1 -62.3 143.6 2.1 -12.0 2.4 9 9 A b - 0 0 21 20,-1.5 7,-0.1 15,-0.1 -1,-0.1 -0.955 11.0-127.1-117.9 128.6 5.4 -12.4 0.5 10 10 A N >> - 0 0 97 -2,-0.5 4,-1.4 1,-0.1 3,-0.7 -0.352 17.5-124.8 -70.5 150.1 5.6 -14.0 -2.9 11 11 A P T 34 S+ 0 0 107 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.605 110.3 60.5 -69.8 -11.3 8.1 -16.8 -3.5 12 12 A S T 34 S+ 0 0 112 2,-0.0 -2,-0.0 3,-0.0 -3,-0.0 0.759 125.6 11.0 -86.7 -28.1 9.6 -14.8 -6.4 13 13 A N T <4 + 0 0 72 -3,-0.7 2,-0.2 1,-0.0 3,-0.1 0.756 63.7 166.6-112.5 -63.1 10.5 -11.8 -4.2 14 14 A D < + 0 0 75 -4,-1.4 2,-1.3 1,-0.2 10,-0.2 0.255 40.1 128.6 62.8 -19.3 10.2 -12.8 -0.5 15 15 A Q - 0 0 169 -2,-0.2 -1,-0.2 -5,-0.1 3,-0.1 -0.539 56.1-144.0 -71.3 95.7 12.2 -9.5 -0.0 16 16 A c - 0 0 20 -2,-1.3 -12,-0.2 6,-0.3 -11,-0.0 -0.228 32.2 -82.1 -60.0 148.9 10.0 -7.7 2.5 17 17 A a > - 0 0 25 -14,-1.2 3,-0.9 1,-0.2 5,-0.4 -0.088 31.0-127.3 -50.3 150.0 9.8 -4.0 2.2 18 18 A K T 3 S+ 0 0 189 1,-0.2 -1,-0.2 -3,-0.1 3,-0.1 0.472 92.5 96.0 -79.9 -1.7 12.7 -2.0 3.7 19 19 A S T 3 S+ 0 0 72 1,-0.2 2,-0.3 2,-0.0 -1,-0.2 0.735 101.0 4.7 -59.9 -21.7 10.1 0.0 5.7 20 20 A S S < S- 0 0 69 -3,-0.9 2,-2.0 2,-0.1 -1,-0.2 -0.977 82.7-100.4-162.6 149.5 10.8 -2.4 8.5 21 21 A K + 0 0 181 -2,-0.3 13,-0.8 -3,-0.1 2,-0.3 -0.509 64.0 151.1 -75.3 81.0 13.0 -5.3 9.5 22 22 A L E -B 33 0B 15 -2,-2.0 2,-0.3 -5,-0.4 -6,-0.3 -0.861 27.5-161.2-115.9 150.0 10.6 -8.1 8.8 23 23 A V E +B 32 0B 42 9,-2.5 9,-2.5 -2,-0.3 5,-0.1 -0.953 21.8 168.4-130.7 149.9 11.2 -11.7 7.7 24 24 A b + 0 0 12 -2,-0.3 -15,-0.1 -10,-0.2 -1,-0.1 0.088 46.5 112.3-145.2 21.9 9.0 -14.3 6.1 25 25 A S S S- 0 0 106 1,-0.1 -16,-0.0 -11,-0.0 6,-0.0 0.997 104.0 -8.4 -60.9 -75.7 11.5 -17.0 5.1 26 26 A R S S+ 0 0 227 3,-0.0 -1,-0.1 0, 0.0 3,-0.1 0.646 123.1 87.1 -97.7 -20.6 10.6 -19.9 7.4 27 27 A K S S- 0 0 100 1,-0.1 -3,-0.1 5,-0.1 4,-0.1 0.238 96.9 -44.0 -62.9-165.5 8.2 -17.9 9.5 28 28 A T - 0 0 47 2,-0.2 4,-0.1 -5,-0.1 -1,-0.1 -0.067 63.2 -98.7 -59.8 165.7 4.5 -17.5 8.7 29 29 A R S S+ 0 0 203 -3,-0.1 -20,-1.5 2,-0.1 2,-0.3 0.717 110.1 69.5 -59.7 -19.9 3.4 -16.7 5.2 30 30 A W B S-A 8 0A 93 -22,-0.2 -22,-0.2 1,-0.1 -2,-0.2 -0.789 100.8 -96.8-103.7 145.3 3.1 -13.1 6.3 31 31 A c - 0 0 0 -24,-2.3 -25,-2.4 -2,-0.3 2,-0.3 -0.352 47.9-176.1 -60.0 129.8 6.1 -10.9 7.1 32 32 A K E -B 23 0B 37 -9,-2.5 -9,-2.5 -27,-0.2 -5,-0.1 -0.956 27.6-103.6-131.6 150.1 6.7 -10.8 10.9 33 33 A Y E -B 22 0B 114 -2,-0.3 2,-0.4 -11,-0.2 -11,-0.2 -0.351 38.7-111.3 -69.8 150.1 9.2 -9.0 13.1 34 34 A Q 0 0 122 -13,-0.8 -1,-0.1 -2,-0.1 -13,-0.1 -0.707 360.0 360.0 -87.0 129.3 12.2 -10.8 14.5 35 35 A I 0 0 178 -2,-0.4 -1,-0.0 0, 0.0 -2,-0.0 -0.834 360.0 360.0-103.6 360.0 12.2 -11.4 18.3