==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 10-MAR-10 3M48 . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.DU,R.D.KETTERING,J.J.ALVARADO,A.TORTAJADA,J.I.YEH . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3059.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 90.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 3 A A >> 0 0 100 0, 0.0 3,-1.1 0, 0.0 4,-0.9 0.000 360.0 360.0 360.0 151.4 -13.5 -7.5 -5.2 2 4 A Q H 3> + 0 0 141 1,-0.3 4,-1.5 2,-0.2 5,-0.1 0.656 360.0 70.3 -65.2 -16.0 -13.4 -4.0 -3.7 3 5 A L H 3> S+ 0 0 125 1,-0.2 4,-2.1 2,-0.2 -1,-0.3 0.885 94.1 54.5 -67.2 -39.9 -10.4 -5.2 -1.7 4 6 A E H <> S+ 0 0 122 -3,-1.1 4,-2.5 1,-0.2 -1,-0.2 0.893 105.9 52.1 -60.0 -41.1 -8.4 -5.2 -4.9 5 7 A A H X S+ 0 0 37 -4,-0.9 4,-2.3 2,-0.2 -1,-0.2 0.866 108.5 50.3 -64.6 -37.4 -9.3 -1.6 -5.6 6 8 A K H X S+ 0 0 101 -4,-1.5 4,-1.9 2,-0.2 -1,-0.2 0.877 110.7 48.8 -71.5 -35.3 -8.2 -0.5 -2.1 7 9 A V H X S+ 0 0 70 -4,-2.1 4,-2.5 2,-0.2 -2,-0.2 0.905 111.4 50.5 -68.3 -40.9 -4.8 -2.3 -2.6 8 10 A E H X S+ 0 0 108 -4,-2.5 4,-2.4 1,-0.2 -2,-0.2 0.875 108.2 52.7 -61.5 -39.8 -4.5 -0.6 -6.0 9 11 A E H X S+ 0 0 133 -4,-2.3 4,-2.4 2,-0.2 -1,-0.2 0.889 109.3 49.4 -63.0 -40.1 -5.2 2.8 -4.3 10 12 A L H X S+ 0 0 118 -4,-1.9 4,-2.8 2,-0.2 -2,-0.2 0.940 111.5 48.4 -63.3 -46.4 -2.5 2.1 -1.8 11 13 A L H X S+ 0 0 81 -4,-2.5 4,-2.5 1,-0.2 -2,-0.2 0.926 113.4 47.5 -59.2 -44.5 -0.0 1.2 -4.6 12 14 A S H X S+ 0 0 54 -4,-2.4 4,-2.6 2,-0.2 -1,-0.2 0.881 111.5 50.2 -62.8 -42.2 -1.0 4.3 -6.5 13 15 A K H X S+ 0 0 123 -4,-2.4 4,-2.4 2,-0.2 -1,-0.2 0.930 109.8 51.5 -62.2 -47.6 -0.7 6.5 -3.4 14 16 A N H X S+ 0 0 74 -4,-2.8 4,-2.9 1,-0.2 5,-0.2 0.955 111.2 47.5 -48.7 -56.1 2.8 5.0 -2.8 15 17 A W H X S+ 0 0 138 -4,-2.5 4,-2.5 1,-0.2 -2,-0.2 0.894 110.5 51.4 -58.9 -44.3 3.9 5.8 -6.3 16 18 A N H X S+ 0 0 113 -4,-2.6 4,-1.6 1,-0.2 -1,-0.2 0.909 113.2 45.5 -60.9 -41.5 2.6 9.3 -6.2 17 19 A L H X S+ 0 0 89 -4,-2.4 4,-2.6 2,-0.2 -2,-0.2 0.921 112.5 49.7 -68.2 -45.4 4.5 10.0 -2.9 18 20 A E H X S+ 0 0 106 -4,-2.9 4,-2.2 1,-0.2 -2,-0.2 0.895 112.2 49.2 -59.9 -39.4 7.7 8.4 -4.1 19 21 A N H X S+ 0 0 86 -4,-2.5 4,-2.1 -5,-0.2 -1,-0.2 0.830 109.0 52.1 -72.6 -30.3 7.5 10.5 -7.3 20 22 A E H X S+ 0 0 97 -4,-1.6 4,-2.4 -5,-0.2 -2,-0.2 0.945 110.7 47.3 -67.0 -47.1 6.9 13.6 -5.3 21 23 A V H X S+ 0 0 74 -4,-2.6 4,-2.4 1,-0.2 -2,-0.2 0.886 111.1 52.8 -60.9 -38.6 10.0 12.9 -3.2 22 24 A A H X S+ 0 0 34 -4,-2.2 4,-2.1 2,-0.2 -1,-0.2 0.910 109.4 48.1 -62.6 -44.3 12.0 12.2 -6.3 23 25 A R H X S+ 0 0 142 -4,-2.1 4,-2.1 2,-0.2 -2,-0.2 0.901 111.1 50.9 -64.9 -39.0 11.0 15.5 -7.8 24 26 A L H X S+ 0 0 87 -4,-2.4 4,-2.1 1,-0.2 -2,-0.2 0.919 108.8 51.7 -65.1 -40.2 11.9 17.3 -4.6 25 27 A K H <>S+ 0 0 118 -4,-2.4 5,-1.3 1,-0.2 -1,-0.2 0.899 109.7 49.1 -61.2 -42.1 15.3 15.6 -4.6 26 28 A K H ><5S+ 0 0 159 -4,-2.1 3,-0.9 3,-0.2 -1,-0.2 0.888 109.8 53.5 -66.5 -35.4 15.9 16.7 -8.2 27 29 A L H 3<5S+ 0 0 143 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.910 113.6 39.8 -63.3 -46.1 14.9 20.3 -7.2 28 30 A V T 3<5S- 0 0 113 -4,-2.1 -1,-0.2 -5,-0.1 -2,-0.2 0.240 118.6-110.8 -91.0 14.3 17.3 20.6 -4.3 29 31 A G T < 5 0 0 67 -3,-0.9 -3,-0.2 1,-0.1 -2,-0.1 0.983 360.0 360.0 55.4 78.1 20.0 18.8 -6.3 30 32 A E < 0 0 106 -5,-1.3 -1,-0.1 0, 0.0 -3,-0.1 -0.644 360.0 360.0-133.2 360.0 20.3 15.5 -4.4