==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID BINDING PROTEIN 03-MAR-13 2M5P . COMPND 2 MOLECULE: GLUCAGON; . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.P.WARD,D.MA . 31 3 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2847.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 51.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 X H 0 0 198 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 167.7 21.5 -28.4 6.7 2 2 X X - 0 0 85 1,-0.0 4,-0.1 4,-0.0 5,-0.0 -0.360 360.0-174.0-151.5 56.8 24.2 -25.7 6.5 3 3 X Q - 0 0 117 1,-0.2 -1,-0.0 2,-0.1 0, 0.0 0.701 21.5-152.4 -19.8 -41.0 23.4 -24.0 3.2 4 4 X G > + 0 0 6 1,-0.1 4,-2.0 29,-0.1 -1,-0.2 0.558 46.3 145.5 67.0 9.7 26.5 -22.2 4.0 5 5 X T T 4 S+ 0 0 37 1,-0.2 -1,-0.1 2,-0.2 -2,-0.1 0.666 82.0 28.4 -47.4 -17.1 25.0 -19.4 1.9 6 6 X F T >4 S+ 0 0 113 -4,-0.1 3,-0.6 2,-0.0 4,-0.2 0.772 124.7 40.4-109.6 -65.3 26.7 -17.3 4.4 7 7 X T T 3> S+ 0 0 34 1,-0.3 4,-1.3 2,-0.2 5,-0.4 0.338 81.7 113.8 -71.2 10.2 29.8 -19.1 5.7 8 8 X S T 3<>S+ 0 0 0 -4,-2.0 5,-1.4 1,-0.2 -1,-0.3 0.484 76.8 51.6 -62.0 1.3 30.3 -20.2 2.1 9 9 X D T <45S+ 0 0 47 -3,-0.6 -1,-0.2 3,-0.2 -2,-0.2 0.836 108.3 42.5-102.0 -54.0 33.3 -18.0 2.3 10 10 X Y T 45S+ 0 0 187 -4,-0.2 -2,-0.2 1,-0.1 -3,-0.1 0.541 130.4 34.4 -70.5 -5.6 35.1 -19.3 5.4 11 11 X S T <5S+ 0 0 94 -4,-1.3 -3,-0.2 -7,-0.2 -2,-0.2 0.761 135.4 16.5-112.4 -57.0 34.2 -22.7 4.1 12 12 X K T 5S- 0 0 79 -5,-0.4 -3,-0.2 -8,-0.2 2,-0.1 0.940 108.8-103.4 -84.7 -56.1 34.3 -22.6 0.3 13 13 X K S S+ 0 0 49 -2,-0.3 3,-1.1 2,-0.1 -1,-0.1 0.739 80.6 59.0-113.5 -47.7 31.1 -15.1 -1.0 16 16 X X G > S+ 0 0 58 1,-0.3 3,-2.8 2,-0.1 -2,-0.0 0.419 76.4 105.6 -66.3 5.8 30.8 -11.7 -2.7 17 17 X R G 3 S+ 0 0 58 1,-0.3 -1,-0.3 2,-0.1 -2,-0.1 0.940 79.0 48.9 -51.0 -49.9 31.9 -13.5 -5.8 18 18 X R G X S- 0 0 60 -3,-1.1 2,-3.1 1,-0.2 3,-1.0 0.342 114.0-128.1 -71.3 9.9 28.4 -13.3 -7.1 19 19 X A T < - 0 0 64 -3,-2.8 -1,-0.2 1,-0.3 -2,-0.1 -0.300 58.5 -67.2 74.7 -57.6 28.7 -9.7 -6.1 20 20 X Q T > S+ 0 0 131 -2,-3.1 3,-2.2 -3,-0.1 -1,-0.3 0.051 114.1 106.4 162.9 -23.8 25.5 -10.1 -4.2 21 21 X D T X> + 0 0 85 -3,-1.0 3,-3.2 1,-0.3 4,-0.9 0.623 54.5 99.5 -52.1 -10.5 23.0 -10.6 -6.9 22 22 X F H >> + 0 0 53 -4,-0.3 3,-1.5 1,-0.3 4,-0.8 0.864 66.1 70.5 -45.9 -39.2 23.1 -14.1 -5.6 23 23 X V H <4 S+ 0 0 79 -3,-2.2 -1,-0.3 1,-0.3 3,-0.3 0.830 98.6 49.2 -48.5 -33.1 19.9 -13.2 -3.7 24 24 X Q H X> S+ 0 0 98 -3,-3.2 4,-2.6 1,-0.2 3,-1.9 0.757 89.0 85.3 -78.0 -25.5 18.3 -13.3 -7.2 25 25 X W H << S+ 0 0 195 -3,-1.5 2,-0.6 -4,-0.9 4,-0.2 0.901 101.2 32.2 -39.7 -57.0 19.9 -16.7 -7.9 26 26 X L T 3< S+ 0 0 113 -4,-0.8 -1,-0.3 -3,-0.3 -2,-0.1 -0.418 126.0 44.6-101.2 56.6 16.9 -18.4 -6.2 27 27 X M T <4 S+ 0 0 154 -3,-1.9 -2,-0.2 -2,-0.6 -3,-0.1 0.290 110.3 41.6-156.7 -52.6 14.3 -15.8 -7.2 28 28 X N < 0 0 138 -4,-2.6 -3,-0.1 1,-0.2 -2,-0.1 0.319 360.0 360.0 -90.6 8.0 14.6 -14.7 -10.8 29 29 X T 0 0 149 -5,-0.5 -1,-0.2 -4,-0.2 -3,-0.1 0.784 360.0 360.0 -94.2 360.0 15.2 -18.4 -11.8 30 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 31 101 X X 0 0 95 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 31.1 -23.4 -4.9 32 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 33 102 X X 0 0 88 0, 0.0 -25,-0.1 0, 0.0 -29,-0.1 0.000 360.0 360.0 360.0 360.0 28.1 -21.5 -2.9