==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID BINDING PROTEIN 04-MAR-13 2M5Q . COMPND 2 MOLECULE: GLUCAGON; . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.P.WARD,D.MA . 31 3 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3360.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 51.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 X H 0 0 220 0, 0.0 4,-0.1 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 150.6 42.9 8.2 -10.5 2 2 X X >> + 0 0 67 1,-0.2 3,-2.4 3,-0.1 4,-2.0 0.880 360.0 179.3 41.2 48.3 42.1 11.5 -8.7 3 3 X Q T 34 S+ 0 0 173 1,-0.3 -1,-0.2 2,-0.2 4,-0.0 0.630 84.7 43.6 -53.8 -10.0 43.6 9.9 -5.6 4 4 X G T 34 S+ 0 0 57 3,-0.1 -1,-0.3 2,-0.1 4,-0.1 0.500 127.3 27.6-111.2 -11.2 42.8 13.3 -4.1 5 5 X T T <4 S+ 0 0 66 -3,-2.4 -2,-0.2 3,-0.1 -3,-0.1 0.115 104.5 76.6-135.7 18.6 39.3 13.6 -5.6 6 6 X F S < S+ 0 0 115 -4,-2.0 -3,-0.2 -5,-0.1 -4,-0.1 0.545 103.2 34.1-105.0 -13.0 38.3 10.0 -6.0 7 7 X T S > S+ 0 0 81 -5,-0.4 3,-1.3 24,-0.1 -2,-0.1 0.824 122.1 35.9-103.6 -70.5 37.5 9.4 -2.3 8 8 X S G > S+ 0 0 77 1,-0.3 2,-1.5 2,-0.2 3,-1.2 0.947 118.0 52.6 -49.9 -57.1 36.1 12.6 -0.7 9 9 X D G 3 S+ 0 0 99 1,-0.3 -1,-0.3 -5,-0.1 -4,-0.1 -0.035 105.0 62.8 -73.1 37.8 34.2 13.5 -3.9 10 10 X Y G < S+ 0 0 70 -2,-1.5 -1,-0.3 -3,-1.3 4,-0.2 0.050 77.2 80.4-149.4 26.8 32.8 10.0 -3.8 11 11 X S S < S+ 0 0 81 -3,-1.2 -2,-0.1 1,-0.1 -3,-0.1 0.216 86.9 58.2-118.8 10.0 30.8 9.9 -0.6 12 12 X K S S+ 0 0 195 -4,-0.1 -1,-0.1 2,-0.0 -3,-0.0 -0.061 105.5 45.3-129.3 31.0 27.7 11.6 -1.9 13 13 X K S >>>S+ 0 0 44 -3,-0.1 4,-2.6 3,-0.0 3,-0.5 0.467 104.6 45.0-133.1 -75.4 26.8 9.3 -4.7 14 14 X L H 3>5S+ 0 0 70 1,-0.3 4,-3.3 2,-0.3 2,-2.1 0.878 107.1 65.9 -44.5 -42.3 26.8 5.5 -4.0 15 15 X D H 345S+ 0 0 125 1,-0.2 -1,-0.3 2,-0.2 -4,-0.0 -0.153 122.1 18.0 -76.1 45.6 25.0 6.4 -0.8 16 16 X X H <45S+ 0 0 66 -2,-2.1 5,-0.3 -3,-0.5 -2,-0.3 0.136 132.4 44.5 176.5 -22.2 22.1 7.5 -3.0 17 17 X R H <5S+ 0 0 177 -4,-2.6 -3,-0.2 3,-0.2 -2,-0.2 0.537 125.6 33.0-111.6 -16.1 22.9 5.8 -6.3 18 18 X R S < S+ 0 0 25 -6,-0.3 4,-3.0 -5,-0.3 5,-0.2 0.629 112.6 49.6-122.0 -41.0 21.3 2.9 -2.0 20 20 X Q H > S+ 0 0 103 -6,-0.2 4,-1.2 2,-0.2 5,-0.2 0.999 114.9 40.8 -66.4 -68.1 18.3 4.5 -3.6 21 21 X D H 4 S+ 0 0 104 -5,-0.3 4,-0.4 2,-0.2 -1,-0.2 0.828 125.5 43.7 -49.2 -32.7 17.9 2.1 -6.6 22 22 X F H >> S+ 0 0 117 2,-0.2 3,-2.9 1,-0.2 4,-2.0 0.983 114.6 41.5 -76.6 -72.6 18.7 -0.6 -4.0 23 23 X V H 3X S+ 0 0 81 -4,-3.0 4,-0.7 1,-0.3 -2,-0.2 0.531 105.7 74.8 -55.1 -1.3 16.7 0.3 -0.9 24 24 X Q H 3< S+ 0 0 82 -4,-1.2 -1,-0.3 -5,-0.2 -2,-0.2 0.783 107.3 26.6 -83.1 -28.2 14.0 1.1 -3.5 25 25 X W H X4 S+ 0 0 110 -3,-2.9 3,-2.9 -4,-0.4 4,-0.3 0.775 111.2 67.4-100.1 -36.8 13.2 -2.6 -4.2 26 26 X L H >< S+ 0 0 94 -4,-2.0 3,-0.5 1,-0.3 -3,-0.2 0.851 109.1 40.7 -51.4 -35.9 14.3 -3.9 -0.8 27 27 X M T 3< S+ 0 0 135 -4,-0.7 -1,-0.3 -5,-0.2 -2,-0.1 0.280 100.4 76.0 -95.9 9.8 11.3 -2.0 0.6 28 28 X N T < 0 0 114 -3,-2.9 -1,-0.2 0, 0.0 -2,-0.2 0.332 360.0 360.0-100.0 5.2 9.1 -3.0 -2.4 29 29 X T < 0 0 141 -3,-0.5 0, 0.0 -4,-0.3 0, 0.0 -0.719 360.0 360.0-137.5 360.0 8.7 -6.6 -1.1 30 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 31 101 X X 0 0 75 0, 0.0 -21,-0.3 0, 0.0 -22,-0.1 0.000 360.0 360.0 360.0 360.0 31.5 11.4 -8.5 32 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 33 102 X X 0 0 196 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 30.7 14.5 -11.3