==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-JUL-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 27-MAR-13 2M67 . COMPND 2 MOLECULE: MERF; . SOURCE 2 ORGANISM_SCIENTIFIC: MORGANELLA MORGANII; . AUTHOR G.J.LU,Y.TIAN,N.VORA,F.M.MARASSI,S.J.OPELLA . 81 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6708.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 72 88.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 20 24.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 50 61.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 195 0, 0.0 6,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -12.7 -3.9 2.4 2.6 2 2 A K - 0 0 139 1,-0.2 5,-0.1 2,-0.1 0, 0.0 0.411 360.0 -15.7 -59.3-153.4 -1.6 2.1 -0.5 3 3 A D S >> S- 0 0 104 1,-0.2 3,-2.8 3,-0.1 4,-1.3 -0.202 75.2-108.5 -50.9 137.4 -0.4 -1.3 -1.8 4 4 A P H 3> S+ 0 0 89 0, 0.0 4,-1.5 0, 0.0 -1,-0.2 0.601 112.0 85.6 -44.9 -8.4 -0.9 -4.1 0.8 5 5 A K H 34 S+ 0 0 51 1,-0.2 75,-0.1 2,-0.2 -2,-0.1 0.865 106.0 18.8 -64.2 -37.1 2.9 -3.8 1.1 6 6 A T H X4 S+ 0 0 60 -3,-2.8 3,-0.5 2,-0.1 4,-0.3 0.651 117.8 67.5-105.5 -24.4 2.6 -1.0 3.6 7 7 A L H >< S+ 0 0 78 -4,-1.3 3,-1.8 1,-0.3 -2,-0.2 0.957 101.2 47.6 -61.6 -51.1 -1.0 -1.6 4.7 8 8 A L T >< S+ 0 0 115 -4,-1.5 3,-1.8 1,-0.3 4,-0.5 0.611 89.6 88.4 -66.1 -9.9 -0.2 -4.9 6.4 9 9 A R T <> + 0 0 36 -3,-0.5 4,-2.2 1,-0.3 5,-0.4 0.734 63.7 85.1 -61.1 -20.5 2.7 -3.1 8.0 10 10 A V H <> S+ 0 0 92 -3,-1.8 4,-2.9 -4,-0.3 5,-0.3 0.839 84.3 58.4 -49.5 -35.7 0.3 -2.2 10.8 11 11 A S H <> S+ 0 0 64 -3,-1.8 4,-3.6 3,-0.2 -1,-0.2 0.959 108.2 41.8 -61.3 -52.8 1.1 -5.6 12.3 12 12 A I H > S+ 0 0 70 -4,-0.5 4,-1.0 -3,-0.3 -2,-0.2 0.965 123.5 37.2 -60.4 -54.8 4.9 -4.9 12.6 13 13 A I H X S+ 0 0 97 -4,-2.2 4,-1.3 2,-0.2 -1,-0.2 0.896 122.6 45.4 -64.7 -41.2 4.5 -1.4 13.9 14 14 A G H X S+ 0 0 25 -4,-2.9 4,-1.7 -5,-0.4 -2,-0.2 0.879 113.5 48.8 -69.5 -39.0 1.4 -2.3 15.9 15 15 A T H X S+ 0 0 79 -4,-3.6 4,-1.8 -5,-0.3 -1,-0.2 0.661 104.3 63.8 -74.2 -16.5 3.1 -5.4 17.3 16 16 A T H X S+ 0 0 28 -4,-1.0 4,-2.4 -5,-0.2 5,-0.2 0.918 105.1 41.7 -73.1 -45.2 6.1 -3.3 18.1 17 17 A L H X S+ 0 0 119 -4,-1.3 4,-3.0 2,-0.2 -2,-0.2 0.927 117.9 46.5 -68.1 -45.1 4.3 -1.1 20.6 18 18 A V H X S+ 0 0 105 -4,-1.7 4,-1.9 2,-0.2 -2,-0.2 0.896 113.6 49.8 -63.7 -41.6 2.4 -4.0 22.2 19 19 A A H < S+ 0 0 19 -4,-1.8 3,-0.2 2,-0.2 -2,-0.2 0.972 118.3 37.0 -61.4 -55.4 5.5 -6.1 22.4 20 20 A L H >X S+ 0 0 48 -4,-2.4 3,-1.2 1,-0.2 4,-0.6 0.851 114.7 56.9 -65.4 -36.1 7.6 -3.4 24.0 21 21 A S H >< S+ 0 0 57 -4,-3.0 3,-1.1 1,-0.3 -1,-0.2 0.841 83.2 82.3 -64.9 -33.2 4.6 -2.3 26.1 22 22 A S T 3< S+ 0 0 88 -4,-1.9 -1,-0.3 1,-0.3 -2,-0.2 0.545 102.1 39.0 -50.6 -2.6 4.2 -5.8 27.5 23 23 A F T X4 S+ 0 0 66 -3,-1.2 3,-1.8 2,-0.1 4,-0.5 0.591 92.4 83.5-119.1 -25.5 7.0 -4.5 29.9 24 24 A T T XX S+ 0 0 75 -3,-1.1 3,-1.7 -4,-0.6 4,-1.1 0.881 80.6 67.3 -47.5 -46.4 5.8 -1.0 30.5 25 25 A P H 3> S+ 0 0 58 0, 0.0 4,-4.6 0, 0.0 5,-0.3 0.796 84.8 74.1 -47.4 -32.6 3.4 -2.1 33.3 26 26 A V H <> S+ 0 0 43 -3,-1.8 4,-2.6 1,-0.2 -2,-0.2 0.909 98.8 44.0 -49.1 -47.4 6.4 -3.1 35.4 27 27 A L H <> S+ 0 0 111 -3,-1.7 4,-1.4 -4,-0.5 -1,-0.2 0.944 117.7 44.1 -64.1 -48.0 7.1 0.6 36.0 28 28 A V H X S+ 0 0 103 -4,-1.1 4,-1.1 1,-0.2 3,-0.2 0.908 114.6 50.0 -62.9 -42.8 3.4 1.4 36.7 29 29 A I H >X S+ 0 0 100 -4,-4.6 4,-2.9 1,-0.2 3,-0.6 0.908 102.2 61.2 -62.6 -43.3 3.1 -1.7 38.8 30 30 A L H 3X S+ 0 0 39 -4,-2.6 4,-2.5 -5,-0.3 5,-0.3 0.885 100.2 55.9 -51.7 -40.6 6.2 -0.8 40.9 31 31 A L H 3X S+ 0 0 125 -4,-1.4 4,-1.8 1,-0.2 -1,-0.3 0.900 111.6 42.6 -59.7 -40.7 4.4 2.3 41.9 32 32 A G H < S+ 0 0 41 -4,-1.8 3,-0.9 -5,-0.3 4,-0.5 0.874 105.5 54.0 -62.7 -36.9 2.3 2.0 47.6 36 36 A L H >X S+ 0 0 118 -4,-2.9 4,-1.3 1,-0.2 3,-1.1 0.838 95.3 68.2 -66.1 -33.1 0.8 -1.3 48.8 37 37 A S H 3X S+ 0 0 4 -4,-1.3 4,-1.9 1,-0.3 6,-0.3 0.795 85.2 73.0 -56.6 -28.0 3.6 -1.7 51.3 38 38 A A H << S+ 0 0 74 -3,-0.9 -1,-0.3 -4,-0.7 -2,-0.2 0.912 101.5 40.5 -53.3 -46.7 2.1 1.3 53.1 39 39 A L H <4 S+ 0 0 150 -3,-1.1 -2,-0.2 -4,-0.5 -1,-0.2 0.981 132.5 22.3 -67.7 -59.0 -0.8 -0.9 54.4 40 40 A T H < S- 0 0 91 -4,-1.3 -2,-0.2 3,-0.0 -3,-0.2 0.942 107.2-118.1 -76.0 -49.5 1.1 -4.1 55.2 41 41 A G < + 0 0 50 -4,-1.9 3,-0.2 -5,-0.3 -3,-0.2 0.801 55.8 150.1 108.0 64.6 4.6 -2.5 55.6 42 42 A Y > + 0 0 138 -8,-0.2 3,-2.6 1,-0.2 -4,-0.1 0.209 22.8 133.6-106.0 11.4 7.1 -3.9 53.1 43 43 A L G > S+ 0 0 114 -6,-0.3 3,-0.6 1,-0.3 4,-0.4 0.752 75.7 55.3 -31.7 -32.5 9.1 -0.7 53.0 44 44 A D G 3> S+ 0 0 142 1,-0.2 2,-0.9 -3,-0.2 4,-0.6 0.895 104.0 51.8 -71.4 -42.0 12.1 -3.1 53.3 45 45 A Y G <4 S+ 0 0 131 -3,-2.6 -1,-0.2 1,-0.2 -2,-0.1 -0.369 93.7 77.5 -92.7 53.0 11.0 -5.2 50.2 46 46 A V T <4 S+ 0 0 28 -2,-0.9 4,-0.3 -3,-0.6 -1,-0.2 0.605 92.1 41.9-126.3 -39.4 10.7 -2.2 47.8 47 47 A L T > S+ 0 0 139 -3,-0.5 4,-0.6 -4,-0.4 3,-0.3 0.876 113.8 52.7 -79.2 -40.0 14.3 -1.3 46.9 48 48 A L T >< S+ 0 0 124 -4,-0.6 3,-2.0 1,-0.2 4,-0.3 0.974 108.1 48.0 -60.0 -58.9 15.4 -4.9 46.4 49 49 A P T >4 S+ 0 0 26 0, 0.0 3,-1.3 0, 0.0 4,-0.2 0.669 97.4 75.7 -58.1 -16.2 12.6 -6.0 44.0 50 50 A A T >> S+ 0 0 31 -4,-0.3 3,-2.4 -3,-0.3 4,-0.6 0.840 77.4 72.4 -65.2 -32.8 13.4 -2.8 42.0 51 51 A L H S+ 0 0 55 -3,-1.3 4,-3.1 -4,-0.3 -1,-0.3 0.844 87.9 57.0 -53.7 -34.3 14.1 -6.6 38.6 53 53 A I H <> S+ 0 0 54 -3,-2.4 4,-2.1 -4,-0.2 -1,-0.2 0.931 108.7 44.1 -63.5 -46.2 13.8 -3.6 36.3 54 54 A F H X S+ 0 0 126 -4,-0.6 4,-1.5 -3,-0.3 -2,-0.2 0.922 116.3 46.9 -64.2 -45.1 17.5 -3.5 35.6 55 55 A I H X S+ 0 0 91 -4,-2.7 4,-1.3 1,-0.2 3,-0.2 0.922 115.0 45.8 -63.0 -44.9 17.7 -7.3 35.2 56 56 A G H X S+ 0 0 8 -4,-3.1 4,-3.2 -5,-0.3 5,-0.2 0.825 104.9 63.5 -67.0 -32.2 14.7 -7.2 32.9 57 57 A L H X S+ 0 0 107 -4,-2.1 4,-1.1 1,-0.2 -1,-0.2 0.896 102.2 49.2 -59.9 -41.2 16.2 -4.3 31.0 58 58 A T H < S+ 0 0 78 -4,-1.5 4,-0.4 -3,-0.2 -1,-0.2 0.892 114.5 45.2 -65.7 -39.9 19.1 -6.4 29.9 59 59 A I H >X S+ 0 0 106 -4,-1.3 3,-2.6 1,-0.2 4,-0.5 0.952 105.3 58.7 -68.6 -50.1 16.8 -9.2 28.7 60 60 A Y H >X S+ 0 0 64 -4,-3.2 3,-1.5 1,-0.3 4,-1.1 0.792 91.6 73.5 -49.9 -29.9 14.3 -6.9 26.9 61 61 A A H 3X S+ 0 0 60 -4,-1.1 4,-1.4 1,-0.3 -1,-0.3 0.848 87.7 61.1 -54.8 -34.5 17.3 -5.8 24.8 62 62 A I H <> S+ 0 0 113 -3,-2.6 4,-0.8 -4,-0.4 -1,-0.3 0.805 97.5 59.1 -62.4 -29.9 17.2 -9.2 23.1 63 63 A Q H X S+ 0 0 162 -4,-0.8 4,-2.8 -3,-0.4 3,-0.7 0.940 114.8 55.0 -72.7 -49.2 15.8 -8.4 15.8 67 67 A Q H 3X S+ 0 0 17 -4,-1.0 4,-3.1 1,-0.2 5,-0.2 0.820 98.2 68.0 -53.8 -31.0 13.8 -5.3 15.4 68 68 A A H 3X S+ 0 0 47 -4,-3.0 4,-1.4 2,-0.2 -1,-0.2 0.952 110.3 31.5 -53.6 -53.5 17.1 -3.5 15.1 69 69 A D H << S+ 0 0 96 -4,-0.9 6,-0.3 -3,-0.7 4,-0.2 0.920 118.0 55.5 -70.6 -44.8 17.8 -5.2 11.8 70 70 A A H < S+ 0 0 41 -4,-2.8 -2,-0.2 1,-0.2 7,-0.2 0.831 107.4 52.1 -57.1 -32.7 14.2 -5.4 10.8 71 71 A S H < S+ 0 0 83 -4,-3.1 -1,-0.2 -5,-0.3 -2,-0.2 0.884 129.4 15.8 -71.4 -39.4 14.0 -1.6 11.3 72 72 A S S < S+ 0 0 85 -4,-1.4 -3,-0.2 -5,-0.2 -2,-0.1 0.854 107.3 74.5 -96.4 -79.9 17.0 -1.0 9.0 73 73 A T S > S- 0 0 55 -4,-0.2 2,-2.6 1,-0.2 3,-0.9 -0.109 77.4-141.0 -39.3 101.8 17.8 -4.1 6.8 74 74 A P T 3> S+ 0 0 81 0, 0.0 4,-1.8 0, 0.0 -1,-0.2 0.104 71.2 116.7 -60.6 31.1 14.9 -3.8 4.3 75 75 A K H 3> + 0 0 160 -2,-2.6 4,-1.5 -6,-0.3 -5,-0.1 0.916 69.4 52.0 -67.2 -44.4 14.7 -7.6 4.5 76 76 A F H <> S+ 0 0 60 -3,-0.9 4,-0.6 1,-0.2 3,-0.3 0.947 121.6 31.2 -57.9 -51.0 11.2 -7.6 6.0 77 77 A N H > S+ 0 0 32 -7,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.720 109.4 71.5 -78.6 -23.4 9.8 -5.4 3.2 78 78 A G H < S+ 0 0 40 -4,-1.8 -1,-0.2 1,-0.2 -2,-0.2 0.835 91.7 58.5 -61.7 -32.8 12.3 -6.8 0.7 79 79 A V H < S+ 0 0 119 -4,-1.5 -1,-0.2 -3,-0.3 -2,-0.2 0.915 98.6 57.8 -63.4 -43.8 10.3 -10.1 0.7 80 80 A K H < 0 0 104 -4,-0.6 -1,-0.2 -3,-0.2 -2,-0.2 0.889 360.0 360.0 -54.4 -41.2 7.1 -8.3 -0.4 81 81 A K < 0 0 212 -4,-1.2 -3,-0.0 -76,-0.1 0, 0.0 0.070 360.0 360.0 -43.4 360.0 9.0 -7.1 -3.5