==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, SIGNALING PROTEIN 26-JUL-02 1M94 . COMPND 2 MOLECULE: PROTEIN YNR032C-A; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR T.A.RAMELOT,J.R.CORT,A.A.YEE,A.SEMESI,A.M.EDWARDS, . 73 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4404.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 54 74.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 8.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 18 24.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 9.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 19.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 157 0, 0.0 2,-0.3 0, 0.0 18,-0.2 0.000 360.0 360.0 360.0 137.5 9.9 5.2 6.6 2 2 A I E -A 18 0A 22 16,-3.0 16,-1.9 61,-0.1 2,-0.5 -0.870 360.0-133.7-126.3 161.3 6.1 5.6 6.4 3 3 A E E +A 17 0A 46 -2,-0.3 62,-2.2 14,-0.2 63,-0.5 -0.941 26.5 178.6-118.8 114.2 3.1 3.4 7.3 4 4 A V E -Ab 16 66A 0 12,-2.1 12,-2.5 -2,-0.5 2,-0.4 -0.850 19.6-137.4-114.2 151.6 0.3 3.1 4.7 5 5 A V E -Ab 15 67A 53 61,-2.1 63,-2.4 -2,-0.3 2,-0.5 -0.862 11.9-158.9-108.5 140.7 -2.9 1.0 4.8 6 6 A V E -Ab 14 68A 1 8,-2.3 8,-2.2 -2,-0.4 2,-0.5 -0.967 5.6-171.2-121.4 126.0 -4.2 -0.9 1.8 7 7 A N E -Ab 13 69A 25 61,-2.3 63,-2.2 -2,-0.5 6,-0.3 -0.948 13.9-145.5-119.7 117.9 -7.9 -2.0 1.6 8 8 A D E > -Ab 12 70A 0 4,-2.7 4,-0.8 -2,-0.5 63,-0.2 -0.572 13.2-135.6 -80.2 141.3 -9.0 -4.4 -1.2 9 9 A R T 4 S+ 0 0 132 61,-1.5 -1,-0.1 -2,-0.2 62,-0.1 0.870 106.1 56.2 -64.7 -33.8 -12.6 -3.9 -2.6 10 10 A L T 4 S- 0 0 136 60,-0.3 -1,-0.2 2,-0.1 61,-0.1 0.948 134.7 -76.8 -64.1 -46.3 -13.1 -7.7 -2.6 11 11 A G T 4 S+ 0 0 45 1,-0.1 2,-0.3 0, 0.0 -2,-0.2 0.359 85.6 123.9 146.6 64.8 -12.3 -7.8 1.2 12 12 A K E < -A 8 0A 103 -4,-0.8 -4,-2.7 58,-0.1 2,-0.9 -0.791 28.1-176.6-147.9 101.1 -8.6 -7.6 2.1 13 13 A K E +A 7 0A 141 -2,-0.3 2,-0.4 -6,-0.3 -6,-0.2 -0.814 19.7 161.2-101.4 100.5 -7.3 -5.0 4.6 14 14 A V E -A 6 0A 31 -8,-2.2 -8,-2.3 -2,-0.9 2,-0.3 -0.950 27.2-144.7-121.6 140.2 -3.5 -5.3 4.9 15 15 A R E +A 5 0A 109 -2,-0.4 2,-0.3 -10,-0.2 -10,-0.2 -0.762 20.5 175.4-102.3 148.2 -1.0 -2.6 6.2 16 16 A V E -A 4 0A 0 -12,-2.5 -12,-2.1 -2,-0.3 2,-0.3 -0.991 20.7-137.1-152.3 141.4 2.5 -2.2 4.7 17 17 A K E +A 3 0A 105 -2,-0.3 -14,-0.2 -14,-0.2 2,-0.2 -0.710 36.6 136.4-100.3 152.8 5.3 0.3 5.3 18 18 A C E -A 2 0A 7 -16,-1.9 -16,-3.0 -2,-0.3 2,-0.3 -0.781 46.6 -84.8-163.1-153.5 7.5 2.0 2.6 19 19 A L > - 0 0 56 -2,-0.2 3,-0.6 -18,-0.2 38,-0.2 -0.976 23.7-123.7-135.7 150.7 9.0 5.4 1.6 20 20 A A T 3 S+ 0 0 12 -2,-0.3 38,-1.1 1,-0.3 42,-0.2 0.870 119.1 47.5 -60.7 -32.6 7.6 8.4 -0.3 21 21 A E T 3 S+ 0 0 131 36,-0.2 -1,-0.3 37,-0.1 36,-0.1 0.702 91.0 105.4 -80.8 -18.5 10.5 8.1 -2.7 22 22 A D S < S- 0 0 30 -3,-0.6 35,-2.5 34,-0.1 36,-0.4 -0.279 74.4-121.2 -60.3 146.3 9.9 4.3 -3.0 23 23 A S B > -E 56 0B 37 33,-0.3 4,-2.2 34,-0.1 33,-0.2 -0.512 16.4-114.7 -89.2 160.7 8.3 3.3 -6.3 24 24 A V H > S+ 0 0 0 31,-1.9 4,-2.8 28,-0.5 29,-0.3 0.862 116.0 60.2 -62.1 -32.9 5.0 1.5 -6.7 25 25 A G H > S+ 0 0 13 28,-0.7 4,-1.5 30,-0.3 -1,-0.2 0.968 109.6 40.1 -60.4 -50.8 6.9 -1.5 -8.1 26 26 A D H > S+ 0 0 74 27,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.875 113.4 57.0 -65.9 -34.5 8.9 -1.9 -4.9 27 27 A F H X S+ 0 0 0 -4,-2.2 4,-2.4 1,-0.2 5,-0.2 0.933 106.7 47.6 -62.6 -44.7 5.7 -1.1 -2.9 28 28 A K H X S+ 0 0 16 -4,-2.8 4,-2.5 1,-0.2 -1,-0.2 0.834 108.9 56.0 -66.8 -29.9 3.8 -4.0 -4.6 29 29 A K H X S+ 0 0 108 -4,-1.5 4,-0.8 -5,-0.2 -1,-0.2 0.926 110.9 42.5 -69.0 -42.6 6.8 -6.4 -3.9 30 30 A V H >X S+ 0 0 54 -4,-2.0 4,-0.7 2,-0.2 3,-0.5 0.923 118.2 45.6 -70.1 -42.2 6.7 -5.6 -0.1 31 31 A L H >X S+ 0 0 0 -4,-2.4 4,-2.3 1,-0.2 3,-1.2 0.907 103.2 64.4 -67.5 -40.0 2.9 -5.9 0.0 32 32 A S H 3X S+ 0 0 18 -4,-2.5 4,-1.8 1,-0.3 6,-0.4 0.807 94.6 62.2 -54.1 -29.2 2.9 -9.1 -2.1 33 33 A L H << S+ 0 0 146 -4,-0.8 -1,-0.3 -3,-0.5 -2,-0.2 0.883 111.3 36.4 -66.9 -36.2 4.8 -10.8 0.8 34 34 A Q H << S+ 0 0 90 -3,-1.2 -2,-0.2 -4,-0.7 -1,-0.1 0.935 128.0 33.1 -82.5 -50.7 1.8 -10.2 3.2 35 35 A I H < S- 0 0 28 -4,-2.3 -3,-0.2 -23,-0.0 -2,-0.2 0.788 94.8-139.7 -77.0 -26.8 -1.1 -10.7 0.8 36 36 A G < + 0 0 60 -4,-1.8 -3,-0.2 -5,-0.5 -4,-0.1 0.969 62.0 128.0 66.9 49.4 0.8 -13.4 -1.3 37 37 A T > - 0 0 19 -5,-0.4 4,-0.6 -6,-0.1 3,-0.1 0.337 65.4-122.8-117.6 3.1 -0.6 -12.0 -4.6 38 38 A Q T >4 - 0 0 137 -6,-0.4 3,-0.8 1,-0.2 4,-0.1 0.341 26.6 -91.9 66.3 152.3 2.7 -11.5 -6.5 39 39 A P T 34 S+ 0 0 59 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 0.577 126.1 56.3 -73.9 -9.8 3.9 -8.2 -7.9 40 40 A N T 34 S+ 0 0 145 1,-0.1 -2,-0.1 -3,-0.1 -12,-0.0 0.589 108.7 44.4 -97.8 -12.2 2.1 -9.0 -11.3 41 41 A K S << S+ 0 0 104 -3,-0.8 32,-1.1 -4,-0.6 2,-0.5 0.192 92.4 96.8-115.8 17.3 -1.4 -9.6 -9.8 42 42 A I E -C 72 0A 6 30,-0.2 2,-0.5 -3,-0.1 30,-0.2 -0.900 47.6-174.4-110.1 133.7 -1.5 -6.5 -7.4 43 43 A V E -C 71 0A 26 28,-2.4 28,-1.2 -2,-0.5 2,-0.3 -0.969 7.4-161.0-127.6 117.7 -3.2 -3.3 -8.4 44 44 A L E -CD 70 51A 0 7,-0.5 7,-2.7 -2,-0.5 2,-0.4 -0.740 3.8-159.9 -98.8 146.9 -3.0 -0.2 -6.1 45 45 A Q E -CD 69 50A 42 24,-1.7 24,-2.4 -2,-0.3 2,-0.5 -0.972 8.4-167.2-127.3 140.6 -5.5 2.7 -6.4 46 46 A K S S- 0 0 35 3,-2.4 22,-0.1 -2,-0.4 4,-0.0 -0.804 77.8 -32.8-128.9 92.9 -5.0 6.3 -5.0 47 47 A G S S- 0 0 88 -2,-0.5 -1,-0.1 1,-0.2 3,-0.1 0.966 130.1 -36.6 64.4 51.5 -8.3 8.4 -5.0 48 48 A G S S+ 0 0 77 1,-0.2 2,-0.3 0, 0.0 -1,-0.2 0.947 117.6 115.3 67.4 47.3 -9.7 6.7 -8.1 49 49 A S - 0 0 58 2,-0.0 -3,-2.4 11,-0.0 2,-0.4 -0.975 65.1-124.8-149.3 131.8 -6.3 6.4 -9.9 50 50 A V E -D 45 0A 73 -2,-0.3 2,-0.4 -5,-0.2 -5,-0.2 -0.619 23.8-144.0 -79.7 129.5 -4.3 3.2 -10.9 51 51 A L E -D 44 0A 1 -7,-2.7 -7,-0.5 -2,-0.4 2,-0.3 -0.735 15.9-161.5 -93.1 138.8 -0.7 3.2 -9.5 52 52 A K > - 0 0 114 -2,-0.4 3,-1.5 4,-0.1 -28,-0.5 -0.911 28.2-125.9-122.1 149.8 2.0 1.7 -11.7 53 53 A D T 3 S+ 0 0 74 -2,-0.3 -28,-0.7 -29,-0.3 -27,-0.2 0.837 109.5 65.5 -60.8 -31.1 5.5 0.4 -10.9 54 54 A H T 3 S+ 0 0 158 -30,-0.1 2,-0.4 -31,-0.1 -1,-0.3 0.756 98.0 64.6 -64.5 -21.6 7.0 2.8 -13.5 55 55 A I S < S- 0 0 50 -3,-1.5 -31,-1.9 2,-0.0 -30,-0.3 -0.826 87.1-124.1-105.2 142.5 5.8 5.8 -11.4 56 56 A S B >> -E 23 0B 31 -2,-0.4 4,-1.2 -33,-0.2 3,-0.8 -0.446 21.8-116.5 -80.5 156.9 7.2 6.5 -7.9 57 57 A L H 3>>S+ 0 0 0 -35,-2.5 4,-1.5 1,-0.2 5,-0.9 0.872 114.3 64.4 -60.8 -35.0 4.9 6.8 -4.8 58 58 A E H 345S+ 0 0 77 -38,-1.1 -1,-0.2 -36,-0.4 -37,-0.1 0.878 98.0 55.4 -57.8 -35.7 6.0 10.5 -4.5 59 59 A D H <45S+ 0 0 113 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.2 0.947 111.7 41.6 -63.5 -45.6 4.3 11.2 -7.9 60 60 A Y H <5S- 0 0 49 -4,-1.2 -1,-0.2 2,-0.0 -2,-0.2 0.690 119.3-116.9 -74.3 -16.2 1.0 9.7 -6.6 61 61 A E T <5 + 0 0 109 -4,-1.5 2,-0.6 -5,-0.2 -3,-0.2 0.974 46.4 174.2 78.5 67.1 1.6 11.6 -3.3 62 62 A V < + 0 0 0 -5,-0.9 -1,-0.2 -42,-0.2 2,-0.2 -0.912 7.0 161.5-109.2 115.5 1.9 8.7 -0.7 63 63 A H > - 0 0 85 -2,-0.6 3,-0.8 1,-0.1 -61,-0.1 -0.567 46.6 -58.3-121.0-173.7 2.9 9.8 2.8 64 64 A D T 3 S+ 0 0 97 1,-0.2 -60,-0.2 -2,-0.2 -1,-0.1 -0.373 120.6 15.1 -67.7 146.3 2.7 8.2 6.3 65 65 A Q T 3 S+ 0 0 146 -62,-2.2 -1,-0.2 1,-0.2 2,-0.2 0.881 94.3 149.1 58.6 38.8 -0.8 7.3 7.6 66 66 A T E < -b 4 0A 29 -3,-0.8 -61,-2.1 -63,-0.5 2,-0.5 -0.669 47.1-120.2-101.0 158.3 -2.2 7.5 4.0 67 67 A N E +b 5 0A 104 -2,-0.2 2,-0.3 -63,-0.2 -61,-0.2 -0.840 31.7 179.5-101.2 131.4 -5.1 5.4 2.7 68 68 A L E -b 6 0A 1 -63,-2.4 -61,-2.3 -2,-0.5 2,-0.3 -0.944 19.7-134.0-128.5 150.5 -4.5 3.1 -0.4 69 69 A E E -bC 7 45A 25 -24,-2.4 -24,-1.7 -2,-0.3 2,-0.3 -0.734 16.0-148.9-102.7 153.3 -6.9 0.8 -2.3 70 70 A L E +bC 8 44A 0 -63,-2.2 -61,-1.5 -2,-0.3 2,-0.3 -0.918 15.5 176.2-122.5 148.7 -6.0 -2.8 -3.4 71 71 A Y E - C 0 43A 82 -28,-1.2 -28,-2.4 -2,-0.3 2,-0.7 -0.997 26.2-131.0-148.2 148.3 -7.2 -4.8 -6.4 72 72 A Y E C 0 42A 42 -2,-0.3 -30,-0.2 -30,-0.2 -31,-0.1 -0.869 360.0 360.0-107.2 109.3 -6.3 -8.3 -7.8 73 73 A L 0 0 162 -32,-1.1 -2,-0.1 -2,-0.7 0, 0.0 -0.893 360.0 360.0-159.0 360.0 -5.6 -8.3 -11.5