==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-JUL-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ISOMERASE 07-JUN-13 2M9F . COMPND 2 MOLECULE: PEPTIDYL-PROLYL CIS-TRANS ISOMERASE NIMA-INTERACT . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.ENCK,W.CHEN,J.L.PRICE,E.T.POWERS,C.WONG,H.J.DYSON,J.W.KELL . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2615.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 48.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 30.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 174 0, 0.0 31,-0.1 0, 0.0 29,-0.1 0.000 360.0 360.0 360.0 -53.7 -8.8 1.6 -3.0 2 2 A L - 0 0 45 29,-0.1 3,-0.1 2,-0.1 28,-0.0 0.871 360.0-127.3 73.7 119.6 -7.4 -1.6 -4.7 3 3 A P > - 0 0 68 0, 0.0 3,-1.6 0, 0.0 0, 0.0 -0.255 59.4 -52.7 -72.0 174.9 -8.6 -3.7 -7.7 4 4 A P T 3 S+ 0 0 117 0, 0.0 18,-0.1 0, 0.0 3,-0.1 -0.218 126.2 14.6 -49.6 130.1 -9.2 -7.5 -7.4 5 5 A G T 3 S+ 0 0 23 1,-0.3 16,-1.5 -3,-0.1 2,-0.4 0.297 91.4 124.9 87.2 -7.2 -6.2 -9.4 -6.0 6 6 A W E < +A 20 0A 51 -3,-1.6 2,-0.3 14,-0.3 14,-0.3 -0.722 32.6 166.9 -85.1 131.9 -4.2 -6.4 -4.7 7 7 A E E -A 19 0A 87 12,-2.1 12,-3.2 -2,-0.4 10,-0.0 -0.961 37.3 -78.0-148.2 157.1 -3.2 -6.5 -0.9 8 8 A K E +A 18 0A 74 -2,-0.3 10,-0.3 10,-0.2 2,-0.2 -0.259 49.5 156.1 -67.6 140.9 -0.9 -4.6 1.6 9 9 A R E -A 17 0A 74 8,-3.1 8,-1.8 -2,-0.0 2,-0.3 -0.852 24.2-141.0-143.6-179.8 3.0 -5.1 1.8 10 10 A M E -A 16 0A 127 6,-0.3 2,-0.4 -2,-0.2 6,-0.2 -0.989 14.2-128.0-154.5 140.3 6.1 -3.2 2.9 11 11 A F E >> -A 15 0A 71 4,-3.1 3,-2.4 -2,-0.3 4,-1.4 -0.787 25.0-130.2 -81.9 130.8 9.7 -2.8 1.7 12 12 A A T 34 S+ 0 0 102 -2,-0.4 -1,-0.1 1,-0.3 0, 0.0 0.751 107.0 66.4 -60.1 -26.9 12.3 -3.5 4.5 13 13 A N T 34 S- 0 0 144 2,-0.1 -1,-0.3 1,-0.1 -2,-0.0 0.343 131.2 -85.5 -72.4 3.8 14.1 -0.2 3.8 14 14 A G T <4 S+ 0 0 59 -3,-2.4 2,-0.3 1,-0.2 -2,-0.2 0.942 84.9 118.6 95.8 61.8 10.8 1.5 5.1 15 15 A T E < -A 11 0A 66 -4,-1.4 -4,-3.1 2,-0.0 2,-0.3 -0.909 45.3-142.2-153.2 133.2 8.0 1.9 2.5 16 16 A V E +A 10 0A 67 -2,-0.3 -6,-0.3 -6,-0.2 2,-0.2 -0.694 29.7 156.7 -94.7 141.3 4.4 0.5 2.3 17 17 A Y E -A 9 0A 35 -8,-1.8 -8,-3.1 -2,-0.3 2,-0.4 -0.860 38.4-109.8-148.0 179.9 2.7 -0.6 -0.9 18 18 A Y E -AB 8 27A 3 9,-2.8 9,-2.8 -10,-0.3 2,-0.4 -0.985 29.3-159.3-126.8 130.6 -0.1 -2.9 -2.3 19 19 A F E -AB 7 26A 45 -12,-3.2 -12,-2.1 -2,-0.4 2,-1.2 -0.944 18.6-134.8-120.6 128.0 0.8 -6.0 -4.3 20 20 A N E >> -A 6 0A 10 5,-2.9 4,-3.3 -2,-0.4 3,-1.8 -0.685 17.2-167.7 -78.9 93.0 -1.3 -8.0 -6.8 21 21 A H T 34 S+ 0 0 105 -16,-1.5 -1,-0.1 -2,-1.2 -15,-0.1 0.175 84.4 61.3 -73.1 22.7 -0.6 -11.6 -5.7 22 22 A I T 34 S+ 0 0 128 -18,-0.1 -1,-0.3 -17,-0.1 -16,-0.1 0.522 127.0 8.4-111.0 -19.2 -2.3 -12.8 -8.9 23 23 A T T <4 S- 0 0 85 -3,-1.8 -2,-0.2 2,-0.1 -18,-0.0 0.560 96.3-114.6-134.0 -21.6 0.3 -11.1 -11.3 24 24 A N < + 0 0 122 -4,-3.3 -3,-0.2 1,-0.3 2,-0.0 0.418 62.8 150.1 80.1 8.7 3.1 -9.7 -9.0 25 25 A A - 0 0 40 -5,-0.5 -5,-2.9 -6,-0.1 2,-0.3 -0.376 28.5-159.9 -64.3 151.8 2.2 -6.0 -9.9 26 26 A S E +B 19 0A 71 -7,-0.2 2,-0.3 -20,-0.1 -7,-0.2 -0.992 17.1 161.3-143.0 130.6 3.0 -3.4 -7.1 27 27 A Q E -B 18 0A 101 -9,-2.8 -9,-2.8 -2,-0.3 -2,-0.0 -0.975 42.8-127.3-148.6 154.3 1.6 0.1 -6.5 28 28 A F + 0 0 137 -2,-0.3 2,-0.5 -11,-0.2 -9,-0.1 0.337 62.1 133.2 -85.2 5.0 1.3 2.7 -3.6 29 29 A E - 0 0 43 -11,-0.2 -2,-0.1 1,-0.1 -27,-0.0 -0.467 46.8-151.1 -64.7 109.7 -2.5 3.1 -4.1 30 30 A R - 0 0 138 -2,-0.5 -2,-0.1 1,-0.1 -1,-0.1 -0.655 17.9-167.6 -98.4 134.8 -3.9 2.9 -0.5 31 31 A P - 0 0 36 0, 0.0 -29,-0.1 0, 0.0 -1,-0.1 0.039 63.8 -62.2 -83.4-155.0 -7.3 1.7 0.8 32 32 A S 0 0 122 -31,-0.1 -2,-0.1 1,-0.1 0, 0.0 0.755 360.0 360.0 -61.2 -23.4 -8.5 2.3 4.4 33 33 A G 0 0 45 0, 0.0 -1,-0.1 0, 0.0 -25,-0.0 -0.897 360.0 360.0-109.1 360.0 -5.5 0.2 5.6