==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 06-JUN-96 1MAG . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR R.R.KETCHEM,B.ROUX,T.A.CROSS . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2792.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 86.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 91 0, 0.0 20,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 109.8 -2.4 -3.6 -2.6 2 2 A G E -aB 8 20A 18 5,-2.1 7,-2.9 18,-0.2 2,-0.3 -0.899 360.0 -14.9 160.2-134.1 1.3 -3.2 -2.0 3 3 A A E S+aB 9 19A 50 16,-2.6 16,-2.6 -2,-0.3 2,-0.5 -0.859 98.2 36.9-109.7 148.6 3.7 -0.5 -0.9 4 4 A X E S-aB 10 18A 97 5,-1.3 7,-2.5 -2,-0.3 2,-0.5 -0.966 106.9 -14.1 120.0-132.2 2.8 3.2 -0.5 5 5 A A E S+a 11 0A 36 12,-2.5 2,-0.4 -2,-0.5 7,-0.2 -0.957 108.1 38.7-121.2 125.0 -0.5 4.6 0.6 6 6 A X E S-a 12 0A 53 5,-1.7 7,-2.8 -2,-0.5 2,-0.5 -0.917 108.4 -11.0 147.7-117.2 -3.6 2.4 0.8 7 7 A V E S+a 13 0A 61 -2,-0.4 -5,-2.1 5,-0.2 2,-0.4 -0.969 104.9 31.2-120.0 127.3 -3.6 -1.2 2.0 8 8 A X E S-a 2 0A 20 5,-2.2 7,-2.8 -2,-0.5 2,-0.4 -0.968 101.1 -4.1 151.6-120.8 -0.4 -3.2 2.5 9 9 A W E S+a 3 0A 157 -7,-2.9 -5,-1.3 -2,-0.4 2,-0.5 -0.896 110.0 25.5-108.9 129.4 3.1 -2.3 3.6 10 10 A X E S-a 4 0A 106 5,-2.1 2,-0.3 -2,-0.4 -5,-0.1 -0.966 108.1 -2.2 128.2-126.9 4.1 1.3 4.1 11 11 A W E S+a 5 0A 166 -7,-2.5 -5,-1.7 -2,-0.5 2,-0.5 -0.773 103.9 24.7-109.1 151.5 1.6 4.0 5.0 12 12 A X E S+a 6 0A 114 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.909 107.8 1.1 114.8-118.9 -2.2 3.9 5.5 13 13 A W E S+a 7 0A 155 -7,-2.8 -5,-2.2 -2,-0.5 2,-0.5 -0.747 108.0 23.4-100.8 153.7 -3.8 0.6 6.5 14 14 A X E a 8 0A 110 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.902 360.0 360.0 111.4-116.0 -2.3 -2.8 7.1 15 15 A W 0 0 162 -7,-2.8 -5,-2.1 -2,-0.5 -2,-0.1 -0.855 360.0 360.0-107.3 360.0 1.4 -3.1 8.1 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 91 0, 0.0 -12,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 109.8 -2.4 3.6 -4.2 18 2 B G E -Bc 4 24A 18 5,-2.1 7,-2.9 -14,-0.2 2,-0.3 -0.899 360.0 -14.9 160.2-134.1 1.3 3.2 -4.8 19 3 B A E S+Bc 3 25A 50 -16,-2.6 -16,-2.6 -2,-0.3 2,-0.5 -0.859 98.2 36.9-109.7 148.6 3.7 0.5 -6.0 20 4 B X E S-Bc 2 26A 97 5,-1.3 7,-2.5 -2,-0.3 2,-0.5 -0.966 106.9 -14.1 120.0-132.2 2.8 -3.2 -6.3 21 5 B A E S+ c 0 27A 36 -20,-2.5 2,-0.4 -2,-0.5 7,-0.2 -0.957 108.1 38.7-121.2 125.0 -0.5 -4.6 -7.5 22 6 B X E S- c 0 28A 53 5,-1.7 7,-2.8 -2,-0.5 2,-0.5 -0.917 108.4 -11.0 147.7-117.2 -3.6 -2.4 -7.7 23 7 B V E S+ c 0 29A 61 -2,-0.4 -5,-2.1 5,-0.2 2,-0.4 -0.969 104.9 31.2-120.0 127.3 -3.6 1.2 -8.8 24 8 B X E S-cc 18 30A 20 5,-2.2 7,-2.8 -2,-0.5 2,-0.4 -0.968 101.1 -4.1 151.6-120.8 -0.4 3.2 -9.4 25 9 B W E S+c 19 0A 157 -7,-2.9 -5,-1.3 -2,-0.4 2,-0.5 -0.896 110.0 25.5-108.9 129.4 3.1 2.3 -10.4 26 10 B X E S-c 20 0A 106 5,-2.1 2,-0.3 -2,-0.4 -5,-0.1 -0.966 108.1 -2.2 128.2-126.9 4.1 -1.3 -10.9 27 11 B W E S+c 21 0A 166 -7,-2.5 -5,-1.7 -2,-0.5 2,-0.5 -0.773 103.9 24.7-109.1 151.5 1.6 -4.0 -11.9 28 12 B X E S+c 22 0A 114 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.909 107.8 1.1 114.8-118.9 -2.2 -3.9 -12.4 29 13 B W E S+c 23 0A 155 -7,-2.8 -5,-2.2 -2,-0.5 2,-0.5 -0.747 108.0 23.4-100.8 153.7 -3.8 -0.6 -13.3 30 14 B X E c 24 0A 110 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.902 360.0 360.0 111.4-116.0 -2.3 2.8 -14.0 31 15 B W 0 0 162 -7,-2.8 -5,-2.1 -2,-0.5 -2,-0.1 -0.855 360.0 360.0-107.3 360.0 1.4 3.1 -15.0