==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 02-AUG-02 1MB6 . COMPND 2 MOLECULE: HUWENTOXIN-IV; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HUWENA; . AUTHOR K.PENG,Q.SHU,S.P.LIANG . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3218.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 60.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 211 0, 0.0 16,-0.0 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 140.3 4.8 11.2 2.4 2 2 A a - 0 0 45 1,-0.1 2,-0.5 14,-0.0 14,-0.3 -0.274 360.0-110.5 -75.7 167.0 4.6 7.5 1.7 3 3 A L B -a 16 0A 43 12,-1.8 14,-2.1 19,-0.1 4,-0.1 -0.871 28.1-146.3-103.4 124.6 1.8 5.2 3.1 4 4 A E > - 0 0 119 -2,-0.5 3,-0.7 1,-0.2 27,-0.3 0.008 45.5 -56.2 -73.3-172.2 2.8 2.7 5.7 5 5 A I T 3 S+ 0 0 68 1,-0.2 27,-0.2 25,-0.1 -1,-0.2 -0.276 124.4 21.3 -65.6 154.2 1.1 -0.8 6.1 6 6 A F T 3 S+ 0 0 138 25,-2.8 2,-0.5 1,-0.2 -1,-0.2 0.868 90.1 144.0 56.2 37.2 -2.7 -0.9 6.5 7 7 A K < - 0 0 93 -3,-0.7 24,-1.9 24,-0.2 -1,-0.2 -0.919 59.9-110.7-110.7 124.1 -3.0 2.6 4.9 8 8 A A B +B 30 0B 78 -2,-0.5 2,-0.3 22,-0.2 22,-0.2 -0.282 50.2 171.8 -52.4 116.8 -6.0 3.3 2.7 9 9 A b - 0 0 15 20,-0.7 5,-0.1 16,-0.2 3,-0.0 -0.904 26.7-125.7-128.9 158.6 -4.5 3.7 -0.8 10 10 A N - 0 0 97 3,-1.1 5,-0.1 -2,-0.3 14,-0.1 -0.742 14.6-130.4-104.5 155.2 -6.0 4.0 -4.3 11 11 A P S S+ 0 0 81 0, 0.0 3,-0.3 0, 0.0 -1,-0.1 0.826 112.7 39.0 -70.4 -31.6 -5.4 1.8 -7.4 12 12 A S S S+ 0 0 111 1,-0.2 2,-0.9 -3,-0.0 -3,-0.0 0.832 118.3 49.1 -87.1 -34.5 -4.8 5.0 -9.6 13 13 A N S S- 0 0 113 2,-0.0 -3,-1.1 0, 0.0 2,-0.7 -0.680 73.9-179.3-106.7 80.5 -2.9 6.9 -6.9 14 14 A D + 0 0 95 -2,-0.9 -5,-0.0 -3,-0.3 9,-0.0 -0.685 17.2 152.3 -82.6 115.9 -0.3 4.5 -5.6 15 15 A Q + 0 0 102 -2,-0.7 -12,-1.8 -5,-0.1 -1,-0.1 -0.170 18.8 144.3-136.1 43.2 1.8 6.2 -2.8 16 16 A c B -a 3 0A 11 -14,-0.3 2,-0.6 1,-0.1 -12,-0.2 -0.394 59.2 -96.0 -80.4 161.4 3.0 3.2 -0.6 17 17 A a > - 0 0 19 -14,-2.1 5,-2.1 1,-0.2 -1,-0.1 -0.657 32.8-172.6 -80.5 119.2 6.4 3.2 1.1 18 18 A K T > 5S+ 0 0 182 -2,-0.6 3,-1.7 3,-0.2 -1,-0.2 0.843 82.9 60.8 -80.1 -32.9 8.9 1.3 -1.0 19 19 A S T 3 5S+ 0 0 117 1,-0.3 -1,-0.2 2,-0.1 -2,-0.1 0.832 105.9 48.4 -64.1 -28.9 11.7 1.4 1.7 20 20 A S T 3 5S- 0 0 71 2,-0.1 -1,-0.3 13,-0.0 -2,-0.2 0.217 117.7-113.0 -95.1 16.7 9.4 -0.5 4.1 21 21 A K T < 5 + 0 0 142 -3,-1.7 13,-1.9 1,-0.2 2,-0.4 0.936 68.3 146.7 54.3 48.2 8.5 -3.2 1.4 22 22 A L E < -C 33 0B 16 -5,-2.1 2,-0.4 11,-0.2 11,-0.2 -0.913 25.9-176.7-117.3 143.6 4.9 -2.0 1.2 23 23 A V E -C 32 0B 59 9,-2.1 9,-2.9 -2,-0.4 2,-0.3 -0.998 34.3-106.9-140.7 137.9 2.6 -1.9 -1.9 24 24 A b E -C 31 0B 21 -2,-0.4 2,-0.5 7,-0.3 7,-0.2 -0.434 39.3-169.1 -63.2 121.5 -1.0 -0.7 -2.4 25 25 A S E >> -C 30 0B 34 5,-2.2 5,-1.2 -2,-0.3 4,-0.9 -0.950 22.3-160.2-118.8 122.0 -3.3 -3.8 -2.6 26 26 A R T 45S+ 0 0 186 -2,-0.5 -1,-0.1 1,-0.2 5,-0.0 0.823 91.9 67.2 -67.4 -27.2 -6.9 -3.5 -3.8 27 27 A K T 45S+ 0 0 182 1,-0.2 -1,-0.2 2,-0.1 -2,-0.0 0.951 114.8 26.6 -58.7 -47.8 -7.6 -6.9 -2.2 28 28 A T T 45S- 0 0 21 2,-0.3 -1,-0.2 -3,-0.2 -2,-0.2 0.493 106.3-127.7 -93.0 -2.2 -7.0 -5.5 1.3 29 29 A R T <5S+ 0 0 181 -4,-0.9 -20,-0.7 1,-0.2 2,-0.3 0.679 81.9 53.5 65.9 16.5 -8.0 -1.9 0.2 30 30 A W E