==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 27-DEC-94 1MTX . COMPND 2 MOLECULE: MARGATOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: CENTRUROIDES MARGARITATUS; . AUTHOR B.A.JOHNSON,S.P.STEVENS,J.M.WILLIAMSON . 39 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3114.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 61.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 15.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 86 0, 0.0 35,-0.5 0, 0.0 36,-0.1 0.000 360.0 360.0 360.0 90.0 1.4 4.7 1.6 2 2 A I - 0 0 117 33,-0.2 2,-0.4 34,-0.1 33,-0.2 -0.216 360.0-153.6 -47.5 119.2 0.7 1.5 3.5 3 3 A I - 0 0 33 31,-0.1 31,-0.1 1,-0.1 -1,-0.1 -0.827 17.3-144.9-103.4 138.7 -1.4 2.6 6.5 4 4 A N + 0 0 134 -2,-0.4 31,-0.1 29,-0.1 -1,-0.1 0.024 55.1 136.3 -88.4 31.9 -1.5 0.8 9.8 5 5 A V - 0 0 71 29,-0.1 29,-1.1 1,-0.1 2,-0.2 -0.369 58.7-109.0 -74.7 159.0 -5.2 1.6 10.2 6 6 A K B +A 33 0A 168 27,-0.2 2,-0.3 -2,-0.0 27,-0.3 -0.537 41.7 175.8 -87.5 156.1 -7.6 -1.1 11.5 7 7 A a - 0 0 17 25,-0.7 22,-0.0 -2,-0.2 6,-0.0 -0.999 38.5-160.4-156.6 158.0 -10.1 -2.7 9.1 8 8 A T S S+ 0 0 101 1,-0.4 23,-0.1 -2,-0.3 -1,-0.1 0.490 92.3 7.4-113.7 -12.1 -12.8 -5.4 8.9 9 9 A S > - 0 0 37 21,-0.1 3,-1.4 19,-0.1 -1,-0.4 -0.901 68.9-122.0-168.4 138.2 -12.7 -5.4 5.0 10 10 A P G >> S+ 0 0 43 0, 0.0 4,-0.9 0, 0.0 3,-0.6 0.673 107.2 75.5 -58.8 -14.6 -10.6 -3.7 2.4 11 11 A K G >4 S+ 0 0 173 1,-0.3 3,-0.8 2,-0.2 16,-0.1 0.937 95.0 46.4 -65.2 -42.6 -13.8 -2.2 1.1 12 12 A Q G <4 S+ 0 0 114 -3,-1.4 -1,-0.3 1,-0.2 5,-0.1 0.570 104.1 67.1 -75.3 -5.1 -13.8 0.3 4.0 13 13 A b G <> S+ 0 0 0 -3,-0.6 4,-2.0 -4,-0.4 -1,-0.2 0.764 92.8 57.9 -85.1 -26.4 -10.1 0.9 3.2 14 14 A L H > S+ 0 0 70 0, 0.0 3,-0.6 0, 0.0 4,-0.6 0.951 117.6 37.5 -55.0 -53.3 -13.1 5.4 1.2 16 16 A P H >> S+ 0 0 67 0, 0.0 3,-1.0 0, 0.0 4,-0.5 0.920 120.5 47.1 -64.9 -44.3 -10.5 6.5 3.8 17 17 A c H 3X>S+ 0 0 1 -4,-2.0 4,-0.8 1,-0.2 5,-0.6 0.539 108.2 59.3 -75.3 -3.8 -7.7 5.8 1.3 18 18 A K H <<5S+ 0 0 89 -4,-0.7 -1,-0.2 -3,-0.6 6,-0.1 0.561 99.0 55.6-100.3 -9.6 -9.8 7.7 -1.3 19 19 A A H <<5S+ 0 0 92 -3,-1.0 -2,-0.2 -4,-0.6 -1,-0.1 0.571 109.7 46.6 -96.5 -10.2 -9.9 11.0 0.7 20 20 A Q H <5S+ 0 0 129 -4,-0.5 -2,-0.1 2,-0.2 -3,-0.1 0.892 131.7 10.5 -95.4 -56.7 -6.1 11.2 1.0 21 21 A F T <5S- 0 0 71 -4,-0.8 2,-0.3 1,-0.3 -3,-0.2 0.938 112.2 -99.7 -87.0 -62.0 -4.9 10.5 -2.6 22 22 A G > < - 0 0 23 -5,-0.6 3,-0.5 3,-0.0 -1,-0.3 -0.981 52.3 -50.3 167.2-160.6 -8.1 10.6 -4.6 23 23 A Q T 3 S+ 0 0 170 -2,-0.3 -5,-0.1 1,-0.2 -4,-0.1 0.394 130.3 59.0 -83.7 7.6 -10.7 8.3 -6.2 24 24 A S T 3 + 0 0 81 -6,-0.1 2,-0.3 15,-0.1 -1,-0.2 0.594 69.5 117.4-108.3 -16.2 -7.8 6.3 -7.8 25 25 A A < - 0 0 5 -3,-0.5 2,-0.6 -8,-0.1 -8,-0.1 -0.327 56.1-151.6 -54.7 113.4 -5.9 5.4 -4.6 26 26 A G E +B 37 0A 36 11,-1.4 11,-1.8 -2,-0.3 2,-0.3 -0.784 25.6 166.1 -92.1 121.0 -6.1 1.6 -4.6 27 27 A A E -B 36 0A 5 -2,-0.6 2,-0.2 9,-0.2 9,-0.2 -0.925 13.6-179.6-133.5 160.2 -6.0 0.1 -1.1 28 28 A K E -B 35 0A 145 7,-1.2 7,-1.2 -2,-0.3 2,-0.3 -0.836 17.1-134.4-144.5-178.3 -6.7 -3.3 0.6 29 29 A a E -B 34 0A 11 5,-0.3 2,-1.2 -2,-0.2 5,-0.2 -0.903 7.8-145.0-150.5 122.0 -6.7 -4.8 4.0 30 30 A M E > -B 33 0A 160 3,-1.0 3,-0.7 -2,-0.3 -23,-0.1 -0.714 67.8 -78.2 -85.3 98.5 -5.3 -8.2 5.2 31 31 A N T 3 S+ 0 0 155 -2,-1.2 -1,-0.2 1,-0.2 -23,-0.1 0.602 131.7 42.5 4.8 65.6 -8.0 -9.0 7.9 32 32 A G T 3 S+ 0 0 36 1,-0.2 -25,-0.7 -27,-0.1 2,-0.3 0.082 116.0 11.5 171.4 -44.1 -6.3 -6.5 10.3 33 33 A K E < -AB 6 30A 121 -3,-0.7 -3,-1.0 -27,-0.3 -27,-0.2 -0.991 66.4-113.1-153.3 160.5 -5.2 -3.2 8.6 34 34 A b E - B 0 29A 5 -29,-1.1 2,-0.3 -2,-0.3 -5,-0.3 -0.289 21.6-147.4 -88.0 178.8 -5.6 -1.3 5.3 35 35 A K E - B 0 28A 61 -7,-1.2 -7,-1.2 -33,-0.2 2,-0.5 -0.944 2.9-150.8-150.4 124.1 -3.0 -0.6 2.6 36 36 A c E - B 0 27A 0 -35,-0.5 -9,-0.2 -2,-0.3 -34,-0.1 -0.848 8.9-172.9-102.7 127.1 -2.7 2.5 0.4 37 37 A Y E - B 0 26A 126 -11,-1.8 -11,-1.4 -2,-0.5 -2,-0.0 -0.862 16.7-147.2-119.7 96.9 -1.1 2.2 -3.0 38 38 A P 0 0 68 0, 0.0 -13,-0.1 0, 0.0 -2,-0.0 -0.317 360.0 360.0 -60.9 138.2 -0.7 5.6 -4.7 39 39 A H 0 0 224 -2,-0.0 -14,-0.1 0, 0.0 -15,-0.1 -0.497 360.0 360.0-155.0 360.0 -1.1 5.5 -8.5