==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNAL PROTEIN 26-DEC-96 1MYN . COMPND 2 MOLECULE: DROSOMYCIN; . SOURCE 2 ORGANISM_SCIENTIFIC: DROSOPHILA MELANOGASTER; . AUTHOR C.LANDON,P.SODANO,C.HETRU,J.A.HOFFMANN,M.PTAK . 44 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3320.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 54.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 18.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 22.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 106 0, 0.0 2,-0.3 0, 0.0 41,-0.2 0.000 360.0 360.0 360.0 168.5 1.6 0.9 -1.6 2 2 A a E -A 41 0A 32 39,-2.1 39,-3.1 0, 0.0 2,-0.3 -0.811 360.0 -98.6-138.1 178.6 0.2 0.6 -5.2 3 3 A L E -A 40 0A 67 37,-0.3 37,-0.3 -2,-0.3 28,-0.0 -0.774 54.6 -92.4 -97.3 147.5 1.4 -0.5 -8.7 4 4 A S - 0 0 20 35,-3.0 35,-0.1 -2,-0.3 -1,-0.1 -0.240 29.0-161.5 -59.1 153.2 2.3 2.4 -11.0 5 5 A G S S+ 0 0 72 -3,-0.1 -1,-0.1 3,-0.0 -2,-0.0 0.379 92.2 40.6-111.9 -3.7 -0.5 3.6 -13.2 6 6 A R S S+ 0 0 215 2,-0.0 2,-0.1 16,-0.0 -2,-0.1 0.580 97.5 85.0-117.5 -20.6 1.8 5.3 -15.6 7 7 A Y + 0 0 35 32,-0.1 2,-0.3 12,-0.0 32,-0.1 -0.494 56.3 178.5 -81.2 154.5 4.7 2.8 -15.8 8 8 A K + 0 0 192 -2,-0.1 -3,-0.0 2,-0.1 30,-0.0 -0.979 34.0 46.2-158.0 146.3 4.3 -0.1 -18.3 9 9 A G S S- 0 0 47 -2,-0.3 30,-0.2 2,-0.1 2,-0.1 -0.659 94.6 -48.5 119.9-176.3 6.4 -3.1 -19.4 10 10 A P - 0 0 95 0, 0.0 2,-0.4 0, 0.0 28,-0.2 -0.414 52.0-135.7 -74.6 169.2 8.3 -5.6 -17.3 11 11 A b + 0 0 1 26,-0.3 27,-0.2 23,-0.2 26,-0.2 -0.921 35.5 157.9-131.0 103.1 10.6 -4.3 -14.6 12 12 A A >> - 0 0 18 -2,-0.4 3,-3.1 25,-0.2 4,-0.9 -0.451 64.5 -61.7-114.3-169.1 14.0 -5.9 -14.4 13 13 A V T 34 S+ 0 0 121 1,-0.3 4,-0.2 2,-0.2 20,-0.0 0.669 136.4 52.3 -48.6 -16.4 17.4 -4.9 -12.9 14 14 A W T 34 S+ 0 0 186 1,-0.1 -1,-0.3 2,-0.1 4,-0.1 0.288 104.5 53.8-105.5 8.0 17.3 -2.0 -15.4 15 15 A D T <> S+ 0 0 27 -3,-3.1 4,-2.4 2,-0.1 -2,-0.2 0.442 77.3 91.5-117.7 -9.7 13.9 -0.6 -14.6 16 16 A N H X S+ 0 0 54 -4,-0.9 4,-2.7 1,-0.2 15,-0.2 0.969 91.1 45.9 -51.8 -57.2 14.1 -0.0 -10.8 17 17 A E H > S+ 0 0 93 1,-0.3 4,-2.9 2,-0.2 5,-0.2 0.930 106.7 61.3 -52.1 -45.1 15.3 3.6 -11.1 18 18 A T H > S+ 0 0 57 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.952 105.9 46.4 -46.9 -52.2 12.5 4.0 -13.7 19 19 A c H X>S+ 0 0 0 -4,-2.4 4,-3.3 1,-0.2 5,-0.6 0.977 107.8 57.1 -56.5 -53.6 10.1 3.1 -10.9 20 20 A R H X5S+ 0 0 136 -4,-2.7 4,-1.5 11,-0.3 -2,-0.2 0.898 114.6 38.3 -41.9 -51.2 12.0 5.6 -8.6 21 21 A R H X5S+ 0 0 167 -4,-2.9 4,-3.4 2,-0.2 -2,-0.2 0.975 117.9 46.2 -69.5 -55.0 11.3 8.4 -11.1 22 22 A V H X5S+ 0 0 34 -4,-3.1 4,-2.4 1,-0.2 5,-0.2 0.906 116.7 45.5 -56.7 -40.5 7.8 7.5 -12.2 23 23 A d H X>S+ 0 0 0 -4,-3.3 5,-3.2 -5,-0.3 4,-1.6 0.867 113.2 50.2 -71.9 -31.7 6.7 6.9 -8.6 24 24 A K H < - 0 0 23 4,-2.6 3,-1.1 -2,-0.2 4,-0.5 -0.780 19.1-120.6-106.9 150.3 9.0 -6.6 -8.0 35 35 A P T 3 S+ 0 0 128 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.646 115.7 65.3 -56.9 -13.7 10.4 -10.2 -8.4 36 36 A S T 3 S- 0 0 91 2,-0.1 3,-0.1 -24,-0.0 -24,-0.1 -0.119 124.5-105.0-103.5 37.4 7.4 -10.5 -10.9 37 37 A L S < S+ 0 0 86 -3,-1.1 -26,-0.3 -26,-0.2 2,-0.3 0.866 80.4 133.6 39.2 54.5 9.1 -7.9 -13.1 38 38 A K - 0 0 101 -4,-0.5 -4,-2.6 -27,-0.2 2,-0.6 -0.862 55.1-124.4-126.7 160.4 6.5 -5.3 -12.0 39 39 A c E - B 0 33A 5 -2,-0.3 -35,-3.0 -6,-0.2 2,-0.3 -0.889 24.9-174.3-114.6 108.9 6.8 -1.7 -10.8 40 40 A W E -AB 3 32A 100 -8,-2.7 -8,-2.0 -2,-0.6 2,-0.5 -0.671 16.5-144.5 -98.7 156.7 5.3 -0.6 -7.5 41 41 A d E -AB 2 31A 0 -39,-3.1 -39,-2.1 -2,-0.3 2,-0.4 -0.960 17.4-144.5-117.8 132.2 5.1 2.8 -6.2 42 42 A E E S+ B 0 30A 71 -12,-3.0 -13,-3.3 -2,-0.5 -12,-1.1 -0.872 74.8 56.5-105.4 135.3 5.7 3.1 -2.5 43 43 A G 0 0 48 -2,-0.4 -1,-0.2 -15,-0.2 -12,-0.0 0.670 360.0 360.0 111.6 46.5 3.7 5.7 -0.4 44 44 A a 0 0 100 -3,-0.2 -2,-0.1 -16,-0.1 -41,-0.1 0.429 360.0 360.0-135.6 360.0 0.2 4.6 -1.4