==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 20-OCT-02 1N1U . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.L.DALY,R.J.CLARK,D.J.CRAIK . 29 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2082.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 41.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 101 0, 0.0 28,-0.2 0, 0.0 21,-0.2 0.000 360.0 360.0 360.0-123.2 4.8 2.4 -4.1 2 2 A G + 0 0 70 26,-0.1 2,-0.4 19,-0.1 27,-0.0 0.071 360.0 139.1 -95.8 25.4 1.6 1.1 -5.7 3 3 A E - 0 0 16 26,-2.1 19,-2.2 19,-0.2 2,-0.3 -0.573 34.4-165.7 -73.0 122.0 0.6 -0.8 -2.6 4 4 A T B -A 21 0A 68 -2,-0.4 17,-0.4 17,-0.3 7,-0.2 -0.794 23.4-158.9-110.8 153.5 -3.1 -0.3 -2.0 5 5 A a > + 0 0 0 15,-1.0 3,-1.1 -2,-0.3 16,-0.3 -0.182 50.6 126.3-121.0 38.9 -5.2 -1.1 1.1 6 6 A V T 3 S+ 0 0 87 14,-0.5 -1,-0.1 1,-0.3 15,-0.1 0.899 80.6 44.7 -62.9 -40.5 -8.6 -1.3 -0.5 7 7 A G T 3 S- 0 0 73 2,-0.4 -1,-0.3 -3,-0.2 3,-0.1 0.368 123.0-106.5 -85.1 5.4 -9.2 -4.7 1.0 8 8 A G S < S+ 0 0 44 -3,-1.1 2,-0.3 1,-0.2 -2,-0.1 0.583 95.3 82.3 80.0 11.6 -7.9 -3.5 4.3 9 9 A T - 0 0 108 -5,-0.1 -2,-0.4 7,-0.1 2,-0.3 -0.996 65.3-143.0-148.1 142.4 -4.6 -5.4 3.9 10 10 A b - 0 0 32 -2,-0.3 4,-0.1 5,-0.3 -5,-0.1 -0.683 13.8-139.1-103.7 159.4 -1.4 -4.8 2.0 11 11 A N S S+ 0 0 141 -2,-0.3 -1,-0.1 -7,-0.2 -6,-0.0 0.844 84.0 84.5 -81.3 -38.6 0.8 -7.3 0.2 12 12 A T S > S- 0 0 48 17,-0.1 3,-1.2 1,-0.1 -2,-0.2 -0.515 88.0-118.1 -70.4 125.0 4.0 -5.8 1.5 13 13 A P T 3 S+ 0 0 118 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.391 95.3 17.2 -65.7 136.2 5.0 -7.1 4.9 14 14 A G T 3 S+ 0 0 69 1,-0.3 2,-0.4 -2,-0.1 -2,-0.1 0.732 91.0 144.2 74.4 23.9 5.1 -4.5 7.7 15 15 A A < - 0 0 23 -3,-1.2 -1,-0.3 9,-0.1 -5,-0.3 -0.790 44.3-134.3 -98.0 137.6 3.1 -2.0 5.7 16 16 A T E -B 23 0A 86 7,-3.1 7,-2.6 -2,-0.4 2,-0.3 -0.614 23.5-111.9 -89.3 148.2 0.6 0.3 7.4 17 17 A a E +B 22 0A 63 -2,-0.2 5,-0.2 5,-0.2 -1,-0.1 -0.623 36.3 167.6 -83.8 137.0 -2.9 0.8 6.0 18 18 A S E > -B 21 0A 44 3,-3.2 3,-2.7 -2,-0.3 -13,-0.1 -0.459 51.3-101.4-144.6 59.0 -3.8 4.2 4.6 19 19 A W T 3 S+ 0 0 177 1,-0.4 -13,-0.1 -14,-0.2 3,-0.1 0.096 106.5 13.4 -31.8 127.5 -7.0 3.5 2.8 20 20 A P T 3 S+ 0 0 62 0, 0.0 -15,-1.0 0, 0.0 -14,-0.5 -0.896 136.8 33.4 -94.6 28.4 -7.1 3.2 -0.0 21 21 A V E < S-AB 4 18A 66 -3,-2.7 -3,-3.2 -17,-0.4 2,-0.4 -0.644 71.9-115.8-126.3-176.7 -3.3 2.9 -0.1 22 22 A b E - B 0 17A 1 -19,-2.2 7,-2.7 -5,-0.2 2,-0.3 -0.974 24.6-176.0-127.8 140.4 -0.5 1.6 2.1 23 23 A T E -CB 28 16A 34 -7,-2.6 -7,-3.1 -2,-0.4 2,-0.3 -0.924 7.7-165.6-132.3 157.3 2.4 3.4 3.7 24 24 A R E > S-C 27 0A 111 3,-3.4 3,-1.5 -2,-0.3 -9,-0.1 -0.977 76.3 -3.6-147.0 127.8 5.4 2.4 5.7 25 25 A N T 3 S- 0 0 134 -2,-0.3 -1,-0.1 1,-0.3 -10,-0.0 0.806 130.8 -57.4 60.2 31.6 7.7 4.6 7.9 26 26 A G T 3 S+ 0 0 71 1,-0.2 -1,-0.3 0, 0.0 -3,-0.0 0.628 120.7 107.0 75.3 14.4 5.6 7.6 6.7 27 27 A L E < S-C 24 0A 118 -3,-1.5 -3,-3.4 0, 0.0 -1,-0.2 -0.982 76.7-107.2-127.4 136.0 6.4 6.8 3.1 28 28 A P E C 23 0A 96 0, 0.0 -5,-0.3 0, 0.0 -26,-0.1 -0.287 360.0 360.0 -60.4 141.5 4.0 5.3 0.5 29 29 A V 0 0 21 -7,-2.7 -26,-2.1 -26,-0.3 -17,-0.1 -0.450 360.0 360.0 -89.4 360.0 4.7 1.7 -0.4