==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 08-NOV-02 1N65 . COMPND 2 MOLECULE: VITAMIN D-DEPENDENT CALCIUM-BINDING PROTEIN, . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR B.JIMENEZ,L.POGGI,M.PICCIOLI . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5344.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 65.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 4.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 36 48.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 226 0, 0.0 34,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -62.5 14.9 -3.7 -3.7 2 2 A S > - 0 0 71 1,-0.1 4,-1.9 4,-0.0 5,-0.1 -0.302 360.0-119.8 -80.0 167.4 13.9 -7.1 -5.0 3 3 A P H > S+ 0 0 95 0, 0.0 4,-3.2 0, 0.0 5,-0.2 0.853 111.3 57.0 -75.0 -37.2 10.4 -8.3 -5.7 4 4 A E H > S+ 0 0 149 2,-0.2 4,-2.6 1,-0.2 5,-0.2 0.935 110.6 43.2 -58.3 -50.1 10.6 -11.1 -3.1 5 5 A E H > S+ 0 0 121 2,-0.2 4,-4.0 1,-0.2 -1,-0.2 0.960 114.5 49.1 -60.5 -54.8 11.4 -8.7 -0.3 6 6 A L H X S+ 0 0 44 -4,-1.9 4,-3.1 2,-0.2 -2,-0.2 0.924 111.5 51.4 -50.0 -51.2 8.9 -6.1 -1.4 7 7 A K H X S+ 0 0 125 -4,-3.2 4,-1.8 1,-0.2 -2,-0.2 0.965 116.1 38.4 -50.0 -64.1 6.3 -8.8 -1.5 8 8 A G H X S+ 0 0 38 -4,-2.6 4,-3.8 1,-0.2 -1,-0.2 0.849 112.4 61.0 -56.0 -37.1 7.0 -10.1 1.9 9 9 A I H X S+ 0 0 45 -4,-4.0 4,-1.2 -5,-0.2 -1,-0.2 0.950 102.5 50.0 -54.8 -54.2 7.5 -6.6 3.1 10 10 A F H >X S+ 0 0 3 -4,-3.1 4,-3.1 1,-0.2 3,-0.7 0.917 115.2 43.3 -50.2 -51.3 3.9 -5.7 2.2 11 11 A E H 3X S+ 0 0 95 -4,-1.8 4,-4.3 2,-0.3 5,-0.4 0.948 104.2 62.3 -60.5 -52.0 2.6 -8.7 4.1 12 12 A K H 3< S+ 0 0 153 -4,-3.8 4,-0.3 1,-0.3 -1,-0.3 0.766 116.8 35.0 -44.8 -27.0 5.0 -8.1 7.0 13 13 A Y H S- 0 0 99 1,-0.1 3,-1.4 2,-0.1 -2,-0.1 0.136 74.7 -96.4 -49.6 175.4 -5.2 -10.1 7.2 20 20 A P T 3 S+ 0 0 35 0, 0.0 -6,-0.3 0, 0.0 -5,-0.2 0.544 129.0 52.4 -75.0 -7.5 -2.0 -10.4 5.3 21 21 A N T 3 S+ 0 0 82 -7,-0.2 42,-0.9 41,-0.1 2,-0.4 0.194 97.4 85.0-109.8 11.3 -3.9 -9.2 2.3 22 22 A Q E < -A 62 0A 83 -3,-1.4 40,-0.3 40,-0.2 2,-0.2 -0.958 58.1-168.3-119.8 133.8 -5.2 -6.2 4.0 23 23 A L E -A 61 0A 0 38,-3.7 38,-1.4 -2,-0.4 2,-0.3 -0.696 6.2-148.5-114.2 167.7 -3.5 -2.8 4.4 24 24 A S > - 0 0 5 -2,-0.2 4,-4.2 36,-0.2 5,-0.4 -0.972 25.4-118.9-138.1 151.4 -4.2 0.2 6.5 25 25 A K H > S+ 0 0 61 -2,-0.3 4,-3.2 1,-0.3 5,-0.2 0.953 119.7 44.2 -49.8 -59.5 -3.7 4.0 6.0 26 26 A E H > S+ 0 0 106 2,-0.2 4,-1.3 1,-0.2 -1,-0.3 0.839 119.2 46.8 -54.8 -35.4 -1.4 4.1 9.1 27 27 A E H >> S+ 0 0 6 2,-0.2 4,-1.9 1,-0.2 3,-0.8 0.992 112.0 45.0 -70.0 -65.2 0.2 1.0 7.8 28 28 A L H 3X S+ 0 0 4 -4,-4.2 4,-3.5 1,-0.3 5,-0.5 0.886 105.8 65.6 -44.7 -46.8 0.7 1.9 4.1 29 29 A K H 3X S+ 0 0 76 -4,-3.2 4,-1.2 -5,-0.4 -1,-0.3 0.908 104.6 43.3 -40.9 -57.6 2.0 5.3 5.4 30 30 A L H XX S+ 0 0 75 -4,-1.3 4,-2.4 -3,-0.8 3,-0.6 0.958 116.2 47.9 -54.2 -56.7 5.0 3.5 7.0 31 31 A L H 3X>S+ 0 0 1 -4,-1.9 4,-2.9 1,-0.3 5,-0.6 0.958 112.6 46.3 -47.6 -65.9 5.5 1.4 3.9 32 32 A L H 3<5S+ 0 0 1 -4,-3.5 8,-0.3 1,-0.2 -1,-0.3 0.731 111.3 60.0 -50.5 -21.7 5.2 4.3 1.5 33 33 A Q H <<5S+ 0 0 103 -4,-1.2 -2,-0.2 -3,-0.6 -1,-0.2 0.970 125.6 11.0 -71.1 -57.1 7.6 5.8 4.0 34 34 A T H <5S+ 0 0 114 -4,-2.4 -2,-0.2 -3,-0.3 -3,-0.2 0.908 131.2 52.4 -87.1 -51.4 10.4 3.3 3.7 35 35 A E T <5S- 0 0 27 -4,-2.9 -3,-0.2 -5,-0.3 -2,-0.1 0.956 137.9 -15.4 -47.9 -65.5 9.3 1.4 0.7 36 36 A F < + 0 0 74 -5,-0.6 4,-0.4 1,-0.1 3,-0.4 -0.725 59.1 171.3-150.0 93.6 8.8 4.5 -1.5 37 37 A P S > S+ 0 0 78 0, 0.0 4,-1.0 0, 0.0 3,-0.2 0.632 83.7 63.6 -75.0 -14.9 8.7 7.9 0.2 38 38 A S H > S+ 0 0 75 1,-0.2 4,-1.4 2,-0.2 -5,-0.1 0.811 92.0 61.4 -76.8 -32.4 8.8 9.5 -3.2 39 39 A L H 4 S+ 0 0 53 -3,-0.4 5,-0.4 -7,-0.2 -1,-0.2 0.729 100.8 57.0 -65.2 -21.8 5.5 8.0 -4.2 40 40 A L H 4 S+ 0 0 42 -4,-0.4 -1,-0.2 -8,-0.3 -2,-0.2 0.899 103.6 49.7 -74.8 -43.2 4.1 10.0 -1.3 41 41 A K H < S+ 0 0 173 -4,-1.0 -2,-0.2 4,-0.1 -1,-0.2 0.783 95.7 101.4 -65.1 -27.4 5.4 13.3 -2.7 42 42 A G S < S- 0 0 27 -4,-1.4 -3,-0.1 2,-0.2 0, 0.0 0.148 102.2 -89.3 -48.7 173.8 3.8 12.2 -6.0 43 43 A M S S+ 0 0 176 1,-0.1 2,-0.9 2,-0.1 -1,-0.1 0.607 114.9 82.6 -64.6 -11.2 0.4 13.7 -7.0 44 44 A S S S- 0 0 33 -5,-0.4 -2,-0.2 4,-0.1 -1,-0.1 -0.826 71.2-165.7-100.6 98.4 -1.1 10.8 -5.1 45 45 A T > - 0 0 72 -2,-0.9 4,-3.5 -4,-0.1 5,-0.2 -0.225 37.4 -94.8 -76.3 169.7 -1.2 11.7 -1.5 46 46 A L H > S+ 0 0 39 2,-0.2 4,-3.5 1,-0.2 5,-0.3 0.954 129.1 42.7 -47.0 -65.1 -1.7 9.3 1.4 47 47 A D H > S+ 0 0 88 1,-0.3 4,-3.8 2,-0.2 5,-0.4 0.900 114.0 53.7 -48.4 -46.9 -5.5 10.0 1.5 48 48 A E H > S+ 0 0 79 2,-0.2 4,-3.6 1,-0.2 -1,-0.3 0.908 113.7 41.9 -54.9 -46.1 -5.4 9.9 -2.3 49 49 A L H X S+ 0 0 4 -4,-3.5 4,-4.5 -3,-0.3 5,-0.5 0.978 116.0 47.4 -65.3 -58.2 -3.8 6.5 -2.1 50 50 A F H X S+ 0 0 44 -4,-3.5 4,-2.6 1,-0.2 -2,-0.2 0.900 121.5 38.1 -48.8 -48.6 -5.9 5.1 0.7 51 51 A E H < S+ 0 0 133 -4,-3.8 -2,-0.2 -5,-0.3 -1,-0.2 0.944 119.3 47.2 -68.9 -50.5 -9.0 6.4 -1.0 52 52 A E H < S+ 0 0 119 -4,-3.6 -2,-0.2 -5,-0.4 -3,-0.2 0.953 119.4 39.5 -55.1 -55.8 -7.8 5.5 -4.5 53 53 A L H < S+ 0 0 10 -4,-4.5 2,-1.4 -5,-0.2 -2,-0.2 0.965 103.3 74.0 -58.7 -55.9 -6.7 2.0 -3.5 54 54 A D < + 0 0 30 -4,-2.6 2,-0.2 -5,-0.5 -1,-0.1 -0.457 58.1 162.6 -64.1 93.4 -9.7 1.5 -1.2 55 55 A K + 0 0 180 -2,-1.4 2,-0.3 5,-0.2 -1,-0.1 -0.454 47.4 70.1-112.7 56.0 -12.3 0.9 -3.9 56 56 A N S S- 0 0 65 -2,-0.2 2,-0.8 4,-0.0 4,-0.1 -0.887 90.4 -91.2-154.2-179.0 -14.9 -0.7 -1.8 57 57 A G S S+ 0 0 84 -2,-0.3 -2,-0.0 1,-0.1 -3,-0.0 -0.674 105.4 55.7-106.5 75.8 -17.4 0.0 1.0 58 58 A D S S- 0 0 111 -2,-0.8 -1,-0.1 2,-0.1 -4,-0.0 0.209 98.1-111.1-162.2 -51.0 -15.5 -0.7 4.1 59 59 A G + 0 0 34 1,-0.3 2,-0.3 -9,-0.1 -2,-0.1 0.836 68.2 106.8 100.1 77.7 -12.3 1.4 4.2 60 60 A E - 0 0 40 -10,-0.2 -1,-0.3 -9,-0.1 -5,-0.2 -0.871 53.4-128.2-177.9 144.5 -9.2 -0.7 3.8 61 61 A V E -A 23 0A 0 -38,-1.4 -38,-3.7 -2,-0.3 2,-0.3 -0.508 22.9-167.8 -96.5 167.3 -6.5 -1.5 1.3 62 62 A S E > -A 22 0A 29 -40,-0.3 4,-2.8 -2,-0.2 -40,-0.2 -0.969 39.1-100.7-151.5 161.7 -5.3 -4.9 0.1 63 63 A F H > S+ 0 0 42 -42,-0.9 4,-3.7 -2,-0.3 5,-0.1 0.888 122.4 48.9 -49.8 -45.7 -2.5 -6.5 -1.9 64 64 A E H > S+ 0 0 154 -43,-0.3 4,-0.8 2,-0.2 -1,-0.2 0.987 116.8 38.0 -58.5 -65.4 -4.8 -6.7 -4.9 65 65 A E H 4 S+ 0 0 37 1,-0.2 -1,-0.2 2,-0.2 -2,-0.2 0.743 120.2 52.5 -58.4 -23.6 -6.0 -3.1 -4.8 66 66 A F H >X S+ 0 0 3 -4,-2.8 3,-3.6 1,-0.2 4,-1.5 0.885 92.0 68.9 -79.1 -42.6 -2.5 -2.3 -3.8 67 67 A Q H 3X S+ 0 0 75 -4,-3.7 4,-3.2 1,-0.3 5,-0.2 0.751 87.5 71.8 -47.2 -25.6 -0.8 -4.1 -6.7 68 68 A V H 3X S+ 0 0 87 -4,-0.8 4,-1.0 1,-0.2 -1,-0.3 0.838 102.2 41.1 -60.1 -33.9 -2.4 -1.3 -8.7 69 69 A L H <> S+ 0 0 12 -3,-3.6 4,-1.9 -4,-0.2 -2,-0.2 0.881 111.8 54.8 -80.1 -42.3 0.2 1.0 -7.1 70 70 A V H X S+ 0 0 46 -4,-1.5 4,-3.8 2,-0.2 5,-0.3 0.933 106.6 51.5 -55.6 -49.8 3.0 -1.5 -7.4 71 71 A K H X S+ 0 0 93 -4,-3.2 4,-3.4 1,-0.3 -1,-0.2 0.893 112.1 46.6 -54.1 -42.8 2.4 -1.9 -11.1 72 72 A K H < S+ 0 0 158 -4,-1.0 -1,-0.3 -5,-0.2 -2,-0.2 0.771 113.4 51.0 -70.1 -26.5 2.5 1.9 -11.4 73 73 A I H < S+ 0 0 39 -4,-1.9 -2,-0.2 -3,-0.3 -1,-0.2 0.933 120.7 31.5 -74.8 -49.3 5.7 1.7 -9.3 74 74 A S H < 0 0 96 -4,-3.8 -2,-0.2 -5,-0.1 -3,-0.2 0.960 360.0 360.0 -72.3 -54.5 7.4 -0.9 -11.4 75 75 A Q < 0 0 165 -4,-3.4 -3,-0.2 -5,-0.3 -4,-0.0 0.715 360.0 360.0 -71.8 360.0 5.8 0.2 -14.7