==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE/CELL CYCLE 19-NOV-02 1N87 . COMPND 2 MOLECULE: PRE-MRNA SPLICING FACTOR PRP19; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR W.J.CHAZIN,M.D.OHI,C.W.VANDER KOOI . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3885.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 41.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 191 0, 0.0 2,-0.3 0, 0.0 20,-0.0 0.000 360.0 360.0 360.0 -2.5 -7.3 0.8 -7.7 2 2 A L - 0 0 114 7,-0.1 20,-0.4 1,-0.0 7,-0.1 -0.895 360.0 -83.9-119.1 152.7 -6.1 -2.9 -7.2 3 3 A C - 0 0 7 5,-1.1 4,-0.3 -2,-0.3 20,-0.2 -0.172 20.0-151.5 -65.2 138.9 -3.0 -4.0 -5.2 4 4 A A S S+ 0 0 37 2,-0.1 -1,-0.1 1,-0.1 19,-0.1 0.681 96.6 56.0 -79.5 -19.7 0.5 -4.0 -6.7 5 5 A I S S- 0 0 39 3,-0.1 -1,-0.1 19,-0.1 18,-0.0 0.971 140.2 -20.8 -74.6 -58.2 1.5 -6.9 -4.4 6 6 A S S S- 0 0 90 2,-0.1 -2,-0.1 18,-0.0 17,-0.0 0.448 82.9-111.7-136.0 -5.6 -1.2 -9.4 -5.4 7 7 A G + 0 0 31 -4,-0.3 -3,-0.1 1,-0.2 2,-0.1 0.540 60.9 155.5 86.5 7.3 -4.2 -7.5 -7.0 8 8 A K - 0 0 102 -6,-0.1 -5,-1.1 1,-0.1 -1,-0.2 -0.329 55.5-105.3 -62.4 141.7 -6.6 -8.2 -4.1 9 9 A V - 0 0 129 -7,-0.1 -1,-0.1 1,-0.1 -7,-0.1 -0.638 53.0-119.1 -67.0 114.6 -9.6 -5.8 -3.3 10 10 A P - 0 0 34 0, 0.0 -1,-0.1 0, 0.0 14,-0.1 -0.340 31.1-170.4 -73.6 145.7 -8.2 -4.0 -0.2 11 11 A R S S+ 0 0 190 1,-0.2 13,-0.1 -2,-0.1 -2,-0.0 0.714 99.8 29.3 -91.9 -31.4 -9.7 -4.1 3.4 12 12 A R S S- 0 0 138 2,-0.0 13,-2.2 42,-0.0 -1,-0.2 -0.787 89.2-151.2-126.4 83.3 -7.2 -1.3 4.3 13 13 A P E +A 24 0A 38 0, 0.0 40,-2.5 0, 0.0 2,-0.3 -0.376 25.4 176.8 -58.0 127.5 -6.4 0.7 1.1 14 14 A V E -AB 23 52A 0 9,-2.6 9,-2.8 38,-0.3 2,-0.3 -0.981 17.7-163.6-141.6 143.6 -2.9 2.1 1.4 15 15 A L E - B 0 51A 31 36,-2.3 36,-2.6 -2,-0.3 7,-0.1 -0.886 8.8-151.8-125.3 157.4 -0.4 4.1 -0.8 16 16 A S > - 0 0 0 5,-0.4 4,-2.6 -2,-0.3 5,-0.1 -0.996 27.4-124.0-127.5 133.3 3.4 4.7 -0.8 17 17 A P T 4 S+ 0 0 51 0, 0.0 33,-0.0 0, 0.0 29,-0.0 0.559 106.5 46.1 -55.0 -13.6 4.7 8.1 -2.3 18 18 A K T 4 S+ 0 0 42 25,-0.1 28,-0.0 28,-0.0 -3,-0.0 0.902 119.9 33.0 -95.9 -57.0 7.1 6.2 -4.7 19 19 A S T 4 S- 0 0 15 24,-0.1 3,-0.1 1,-0.1 -4,-0.0 0.819 84.0-166.2 -63.8 -37.9 4.9 3.4 -6.2 20 20 A R < + 0 0 172 -4,-2.6 -1,-0.1 1,-0.2 -5,-0.0 0.349 45.9 117.9 58.6 1.1 1.8 5.7 -6.0 21 21 A T S S- 0 0 33 -5,-0.1 2,-0.5 -20,-0.0 -5,-0.4 -0.156 71.4-109.7 -69.5 177.4 -0.6 2.7 -6.6 22 22 A I + 0 0 33 -20,-0.4 -7,-0.2 -7,-0.1 2,-0.2 -0.971 44.5 168.8-116.4 115.8 -3.2 1.6 -4.0 23 23 A F E -A 14 0A 0 -9,-2.8 -9,-2.6 -2,-0.5 2,-0.4 -0.679 42.6 -89.2-112.7 169.2 -2.4 -1.7 -2.3 24 24 A E E > -A 13 0A 0 -2,-0.2 4,-2.4 -11,-0.2 3,-0.4 -0.709 31.5-134.1 -74.3 131.0 -3.8 -3.6 0.7 25 25 A K H > S+ 0 0 59 -13,-2.2 4,-2.6 -2,-0.4 5,-0.1 0.878 106.5 54.1 -52.4 -42.7 -2.0 -2.7 4.0 26 26 A S H > S+ 0 0 33 2,-0.2 4,-1.5 1,-0.2 -1,-0.2 0.872 109.6 45.1 -63.6 -40.4 -1.7 -6.4 4.9 27 27 A L H > S+ 0 0 22 -3,-0.4 4,-1.9 2,-0.2 -2,-0.2 0.870 113.5 49.9 -75.8 -35.2 -0.0 -7.3 1.5 28 28 A L H X S+ 0 0 0 -4,-2.4 4,-3.1 2,-0.2 5,-0.3 0.929 105.8 57.7 -63.2 -44.8 2.4 -4.4 1.7 29 29 A E H X S+ 0 0 108 -4,-2.6 4,-1.1 1,-0.2 -2,-0.2 0.886 107.6 48.5 -54.9 -38.9 3.2 -5.4 5.3 30 30 A Q H X S+ 0 0 121 -4,-1.5 4,-1.1 2,-0.2 3,-0.4 0.959 115.7 41.9 -60.7 -53.3 4.3 -8.8 3.9 31 31 A Y H X>S+ 0 0 73 -4,-1.9 4,-2.3 1,-0.2 5,-1.3 0.859 113.8 52.1 -67.2 -34.8 6.4 -7.3 1.1 32 32 A V H <5S+ 0 0 22 -4,-3.1 -1,-0.2 4,-0.2 -2,-0.2 0.668 110.7 46.7 -83.1 -17.4 8.0 -4.6 3.3 33 33 A K H <5S+ 0 0 174 -4,-1.1 -1,-0.2 -3,-0.4 -2,-0.2 0.605 112.8 53.7 -92.8 -14.7 9.1 -7.2 6.0 34 34 A D H <5S- 0 0 121 -4,-1.1 -2,-0.2 -5,-0.1 -3,-0.1 0.935 145.7 -25.0 -74.1 -57.0 10.5 -9.3 3.1 35 35 A T T <5S- 0 0 78 -4,-2.3 -3,-0.2 2,-0.1 10,-0.2 0.478 75.6-124.9-133.7 -21.6 12.7 -6.6 1.5 36 36 A G < + 0 0 5 -5,-1.3 -4,-0.2 1,-0.2 11,-0.1 0.212 63.7 141.5 83.8 -11.9 11.1 -3.3 2.6 37 37 A N - 0 0 37 -6,-0.4 -1,-0.2 7,-0.2 -2,-0.1 -0.122 61.0-109.7 -67.2 154.5 10.9 -2.2 -1.1 38 38 A D > - 0 0 0 5,-1.0 4,-1.9 7,-0.2 -1,-0.1 -0.700 35.4-119.8 -73.6 133.9 8.0 -0.3 -2.8 39 39 A P T 4 S+ 0 0 28 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.566 103.9 22.7 -55.1 -14.1 6.2 -2.9 -5.2 40 40 A I T 4 S+ 0 0 102 3,-0.1 -21,-0.0 -19,-0.0 -3,-0.0 0.710 131.6 33.7-123.0 -48.8 6.9 -0.9 -8.4 41 41 A T T 4 S- 0 0 54 2,-0.1 -4,-0.0 1,-0.0 -22,-0.0 0.568 89.8-139.5 -85.8 -11.1 9.9 1.5 -7.8 42 42 A N < + 0 0 105 -4,-1.9 -5,-0.1 1,-0.2 3,-0.0 0.632 40.5 165.6 48.7 24.8 11.7 -1.0 -5.5 43 43 A E - 0 0 101 -6,-0.1 -5,-1.0 1,-0.1 -1,-0.2 -0.519 45.8-105.0 -65.1 118.4 12.7 1.9 -3.3 44 44 A P S S+ 0 0 89 0, 0.0 -7,-0.2 0, 0.0 -8,-0.1 -0.278 88.7 19.0 -55.0 132.5 13.9 0.5 0.1 45 45 A L + 0 0 96 -10,-0.2 -7,-0.2 -13,-0.1 -8,-0.1 0.454 54.3 171.3 72.2 144.6 11.3 0.9 3.0 46 46 A S > + 0 0 0 -9,-0.1 3,-2.0 -14,-0.1 -9,-0.1 0.475 69.6 55.8-143.3 -61.5 7.5 1.7 2.4 47 47 A I G > S+ 0 0 47 1,-0.3 3,-1.0 2,-0.2 -18,-0.0 0.759 98.9 64.1 -62.7 -26.9 5.5 1.5 5.6 48 48 A E G 3 S+ 0 0 161 1,-0.2 -1,-0.3 0, 0.0 -3,-0.0 0.533 114.7 35.2 -70.7 -6.0 7.7 4.0 7.4 49 49 A E G < S+ 0 0 106 -3,-2.0 -1,-0.2 2,-0.0 -2,-0.2 0.140 94.0 154.3-128.7 11.9 6.4 6.4 4.7 50 50 A I < - 0 0 53 -3,-1.0 2,-0.4 -34,-0.1 -34,-0.2 -0.059 33.9-161.3 -57.8 143.6 2.8 5.0 4.4 51 51 A V E -B 15 0A 64 -36,-2.6 -36,-2.3 2,-0.0 2,-0.4 -0.861 13.8-161.7-120.7 86.2 -0.3 6.9 3.3 52 52 A E E -B 14 0A 54 -2,-0.4 2,-1.7 -38,-0.2 -38,-0.3 -0.632 20.1-129.7 -72.0 125.9 -3.4 4.9 4.6 53 53 A I - 0 0 76 -40,-2.5 -1,-0.1 -2,-0.4 -39,-0.0 -0.578 32.2-164.1 -82.3 78.5 -6.5 5.9 2.6 54 54 A V - 0 0 93 -2,-1.7 -42,-0.0 1,-0.1 -40,-0.0 -0.272 27.2-122.2 -61.9 151.8 -8.9 6.5 5.6 55 55 A P 0 0 138 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.609 360.0 360.0 -72.9 -11.2 -12.7 6.8 5.0 56 56 A S 0 0 148 0, 0.0 -2,-0.0 0, 0.0 -3,-0.0 0.626 360.0 360.0 -53.3 360.0 -12.8 10.4 6.5