==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 21-NOV-02 1N8M . COMPND 2 MOLECULE: POTASSIUM CHANNEL BLOCKING TOXIN 4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.I.GUIJARRO,S.M'BAREK,T.OLAMENDI-PORTUGAL,F.GOMEZ-LAGUNAS, . 38 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3064.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 65.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 203 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 159.7 -4.1 -10.1 -5.4 2 2 A E - 0 0 109 1,-0.1 2,-1.0 2,-0.0 0, 0.0 -0.507 360.0-123.6 -66.4 130.3 -3.4 -10.4 -1.7 3 3 A A - 0 0 67 -2,-0.2 2,-0.9 28,-0.1 -1,-0.1 -0.682 19.9-159.2 -85.7 102.3 -5.4 -7.8 0.2 4 4 A I - 0 0 32 -2,-1.0 28,-2.7 28,-0.3 2,-0.2 -0.727 17.0-145.5 -79.3 106.7 -3.1 -5.6 2.2 5 5 A R B -A 31 0A 167 -2,-0.9 2,-0.4 26,-0.2 26,-0.2 -0.512 19.9-174.9 -77.0 144.1 -5.4 -4.1 4.9 6 6 A a - 0 0 3 24,-0.5 3,-0.1 -2,-0.2 6,-0.1 -0.999 33.4-167.1-143.8 134.3 -4.8 -0.6 6.0 7 7 A G S S- 0 0 62 -2,-0.4 2,-0.3 1,-0.2 -1,-0.1 0.733 89.4 -1.2 -81.9 -26.7 -6.2 1.7 8.7 8 8 A G S > S- 0 0 21 -3,-0.1 3,-0.5 1,-0.1 -1,-0.2 -0.893 78.2 -98.5-149.7 177.9 -4.4 4.5 6.9 9 9 A S T >> S+ 0 0 53 -2,-0.3 3,-1.6 1,-0.2 4,-0.6 0.833 123.1 58.7 -72.0 -30.7 -2.2 5.4 4.0 10 10 A R H 3> S+ 0 0 194 1,-0.3 4,-0.6 2,-0.2 -1,-0.2 0.678 97.2 62.9 -69.5 -16.0 0.8 5.4 6.4 11 11 A D H <4 S+ 0 0 89 -3,-0.5 -1,-0.3 1,-0.2 -2,-0.2 0.492 101.0 52.8 -85.0 -4.9 -0.3 1.8 7.1 12 12 A b H <> S+ 0 0 0 -3,-1.6 4,-2.2 2,-0.1 5,-0.4 0.572 89.6 76.8-104.2 -16.4 0.5 1.0 3.5 13 13 A Y H X S+ 0 0 94 -4,-0.6 4,-3.3 3,-0.2 5,-0.5 0.955 90.2 54.7 -61.8 -50.8 4.0 2.5 3.4 14 14 A R H X S+ 0 0 205 -4,-0.6 4,-1.9 2,-0.2 -1,-0.2 0.928 117.5 32.9 -51.2 -59.1 5.6 -0.5 5.2 15 15 A P H > S+ 0 0 19 0, 0.0 4,-2.9 0, 0.0 5,-0.2 0.967 124.1 43.5 -63.0 -52.9 4.3 -3.2 2.8 16 16 A c H X>S+ 0 0 0 -4,-2.2 4,-2.6 1,-0.2 5,-0.8 0.850 116.2 47.6 -67.0 -34.5 4.4 -1.2 -0.4 17 17 A Q H X5S+ 0 0 100 -4,-3.3 4,-0.6 -5,-0.4 -1,-0.2 0.874 115.1 46.7 -70.8 -37.4 7.8 0.3 0.4 18 18 A K H <5S+ 0 0 178 -4,-1.9 -2,-0.2 -5,-0.5 -1,-0.2 0.867 117.5 43.8 -69.9 -38.0 9.1 -3.1 1.2 19 19 A R H <5S+ 0 0 141 -4,-2.9 -2,-0.2 -5,-0.2 -3,-0.2 0.946 132.6 14.1 -73.0 -51.2 7.6 -4.6 -2.0 20 20 A T H <5S- 0 0 65 -4,-2.6 -3,-0.2 2,-0.3 -2,-0.1 0.861 100.9-108.2 -97.5 -42.3 8.5 -1.9 -4.5 21 21 A G S < +B 31 0A 86 -2,-1.8 3,-1.8 3,-1.7 -2,-0.1 -0.880 59.8 4.7-113.6 139.5 -8.3 2.6 -1.1 29 29 A N T 3 S- 0 0 136 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.793 128.5 -67.1 60.1 28.4 -11.2 0.2 -0.6 30 30 A K T 3 S+ 0 0 115 -3,-0.3 -24,-0.5 1,-0.2 2,-0.4 0.743 118.8 107.2 62.0 25.0 -9.6 -0.7 2.7 31 31 A T E < S-AB 5 28A 42 -3,-1.8 -3,-1.7 -26,-0.2 2,-0.6 -0.997 77.4-113.8-134.7 138.2 -6.7 -2.1 0.6 32 32 A b E - B 0 27A 14 -28,-2.7 2,-1.0 -2,-0.4 -28,-0.3 -0.593 24.3-162.0 -72.7 113.6 -3.2 -0.8 0.0 33 33 A K E - B 0 26A 95 -7,-3.2 -7,-1.7 -2,-0.6 2,-0.2 -0.813 16.9-158.1 -98.2 93.8 -2.8 0.1 -3.6 34 34 A c E + B 0 25A 33 -2,-1.0 -9,-0.3 -9,-0.2 -10,-0.1 -0.528 31.4 158.8 -80.8 136.4 0.9 0.2 -4.0 35 35 A Y > + 0 0 99 -11,-3.5 3,-0.7 -2,-0.2 -10,-0.2 0.628 18.1 166.4-115.8 -41.5 2.7 2.2 -6.7 36 36 A G T 3 - 0 0 6 -12,-2.4 2,-0.3 1,-0.2 -19,-0.1 -0.295 68.2 -43.2 57.7-142.4 6.1 2.7 -5.3 37 37 A d T 3 0 0 86 -15,-0.1 -1,-0.2 -14,-0.0 -2,-0.0 -0.617 360.0 360.0-117.7 69.0 8.6 3.9 -7.9 38 38 A S < 0 0 170 -3,-0.7 -2,-0.0 -2,-0.3 -17,-0.0 -0.624 360.0 360.0 -72.0 360.0 7.6 1.6 -10.7