==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 01-DEC-02 1NB1 . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR K.J.ROSENGREN,N.L.DALY,M.R.PLAN,C.WAINE,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 1957.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 48.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 20 0, 0.0 3,-0.1 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 -21.8 4.3 0.7 -5.5 2 2 A G + 0 0 88 20,-0.3 2,-0.3 1,-0.3 21,-0.1 0.841 360.0 117.3 65.5 30.9 2.4 -0.3 -8.7 3 3 A E - 0 0 32 19,-0.4 19,-3.0 9,-0.0 2,-0.4 -0.949 57.3-141.3-131.1 150.9 0.7 -2.8 -6.5 4 4 A T - 0 0 83 -2,-0.3 17,-0.3 17,-0.3 3,-0.2 -0.892 5.0-161.8-113.5 143.8 -2.9 -3.3 -5.4 5 5 A b > + 0 0 0 -2,-0.4 3,-2.6 15,-0.2 16,-0.2 -0.298 40.0 140.3-117.3 47.8 -4.1 -4.4 -2.0 6 6 A V T 3 S+ 0 0 83 14,-0.5 -1,-0.2 1,-0.3 15,-0.1 0.834 80.3 46.3 -57.3 -32.3 -7.5 -5.5 -3.1 7 7 A G T 3 S- 0 0 66 2,-0.3 -1,-0.3 -3,-0.2 3,-0.1 0.112 126.3-103.1 -97.1 20.7 -7.1 -8.4 -0.7 8 8 A G S < S+ 0 0 49 -3,-2.6 2,-0.3 1,-0.2 -2,-0.1 0.878 88.5 108.8 61.6 39.9 -5.8 -6.1 2.0 9 9 A T - 0 0 99 -5,-0.1 2,-0.4 7,-0.1 -2,-0.3 -0.998 47.4-165.2-148.8 144.7 -2.2 -7.1 1.5 10 10 A c - 0 0 35 -2,-0.3 4,-0.1 1,-0.1 -5,-0.1 -0.998 10.3-170.0-134.6 132.4 0.9 -5.6 -0.0 11 11 A N + 0 0 147 -2,-0.4 -1,-0.1 2,-0.1 -6,-0.0 0.807 65.4 94.7 -86.7 -36.2 4.1 -7.4 -1.0 12 12 A T S > S- 0 0 37 1,-0.1 3,-2.2 2,-0.1 2,-0.4 -0.432 85.3-119.6 -62.3 118.4 6.2 -4.2 -1.6 13 13 A P T 3 S+ 0 0 127 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.452 98.9 20.4 -64.8 114.7 8.1 -3.5 1.7 14 14 A G T 3 S+ 0 0 63 -2,-0.4 11,-0.7 1,-0.3 2,-0.6 0.255 92.5 124.9 110.4 -9.7 7.0 -0.2 3.0 15 15 A a E < -A 24 0A 13 -3,-2.2 -1,-0.3 9,-0.2 2,-0.3 -0.753 48.2-151.6 -89.9 121.7 3.8 -0.0 1.1 16 16 A T E -A 23 0A 83 7,-2.4 7,-3.2 -2,-0.6 2,-0.3 -0.655 24.6-105.9 -89.8 143.9 0.7 0.5 3.1 17 17 A b E +A 22 0A 60 -2,-0.3 5,-0.2 5,-0.2 2,-0.1 -0.525 41.5 165.3 -74.1 134.0 -2.7 -0.8 2.0 18 18 A S E > -A 21 0A 50 3,-1.4 3,-2.1 -2,-0.3 -13,-0.1 -0.594 54.8 -87.4-147.3 69.1 -5.1 1.8 0.7 19 19 A W T 3 S+ 0 0 174 1,-0.4 -13,-0.1 -14,-0.2 -15,-0.0 0.155 108.7 8.7 -28.7 129.6 -7.7 -0.2 -1.0 20 20 A P T 3 S+ 0 0 53 0, 0.0 -14,-0.5 0, 0.0 -1,-0.4 -0.896 130.9 43.3 -98.6 25.0 -7.6 -1.1 -3.8 21 21 A V E < S-A 18 0A 53 -3,-2.1 -3,-1.4 -17,-0.3 2,-0.5 -0.955 73.6-117.6-130.5 147.8 -4.0 0.1 -4.2 22 22 A c E -A 17 0A 1 -19,-3.0 -19,-0.4 -2,-0.4 -20,-0.3 -0.692 32.1-155.4 -83.5 122.7 -0.8 -0.1 -2.1 23 23 A T E -A 16 0A 17 -7,-3.2 -7,-2.4 -2,-0.5 2,-0.5 -0.675 2.6-148.4 -97.8 152.6 0.5 3.4 -1.1 24 24 A R E > S-AB 15 27A 86 3,-2.8 3,-2.2 -2,-0.3 -9,-0.2 -0.987 72.0 -26.5-126.4 125.5 4.1 4.2 -0.3 25 25 A N T 3 S- 0 0 130 -11,-0.7 -1,-0.1 -2,-0.5 -10,-0.1 0.752 134.0 -36.7 41.9 38.2 5.1 7.0 2.2 26 26 A G T 3 S+ 0 0 73 1,-0.1 -1,-0.3 -10,-0.1 -3,-0.0 0.424 130.5 68.1 102.2 -0.9 1.8 8.8 1.5 27 27 A L B < S-B 24 0A 78 -3,-2.2 -3,-2.8 -5,-0.0 2,-0.8 -0.982 84.4-106.9-153.9 138.3 1.4 8.1 -2.2 28 28 A P 0 0 84 0, 0.0 -5,-0.2 0, 0.0 -6,-0.0 -0.510 360.0 360.0 -68.4 104.2 0.7 5.1 -4.5 29 29 A V 0 0 73 -2,-0.8 -6,-0.1 -7,-0.3 -14,-0.0 0.030 360.0 360.0-142.3 360.0 4.0 4.4 -6.2