==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 02-DEC-02 1NBJ . COMPND 2 MOLECULE: CYCLOVIOLACIN O1; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR K.J.ROSENGREN,N.L.DALY,M.R.PLAN,C.WAINE,D.J.CRAIK . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2342.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 19 0, 0.0 2,-0.7 0, 0.0 24,-0.1 0.000 360.0 360.0 360.0 155.9 4.4 1.7 -3.3 2 2 A A + 0 0 103 28,-0.2 2,-0.3 22,-0.1 10,-0.1 -0.162 360.0 81.7 -86.6 43.4 3.7 -0.9 -6.0 3 3 A E - 0 0 38 -2,-0.7 22,-2.6 22,-0.3 2,-0.5 -0.972 61.8-152.4-150.8 132.9 1.0 -2.6 -3.8 4 4 A S - 0 0 75 -2,-0.3 3,-0.5 20,-0.2 4,-0.3 -0.894 2.4-161.9-105.9 128.4 -2.6 -1.9 -3.0 5 5 A b + 0 0 14 -2,-0.5 19,-0.2 18,-0.4 18,-0.1 0.410 57.6 117.5 -88.9 3.0 -4.0 -3.0 0.3 6 6 A V S S+ 0 0 73 17,-1.6 -1,-0.2 1,-0.3 18,-0.1 0.781 98.7 6.9 -36.5 -44.9 -7.6 -2.7 -1.0 7 7 A Y S S+ 0 0 217 -3,-0.5 -1,-0.3 1,-0.3 -2,-0.1 0.465 139.3 26.8-120.6 -8.7 -8.0 -6.4 -0.4 8 8 A I S S- 0 0 110 -4,-0.3 -1,-0.3 15,-0.1 3,-0.1 -0.973 82.0-101.4-158.0 141.5 -4.8 -7.4 1.4 9 9 A P - 0 0 102 0, 0.0 5,-0.1 0, 0.0 -5,-0.1 -0.193 58.1 -77.0 -61.0 152.5 -2.1 -5.7 3.6 10 10 A c + 0 0 22 1,-0.1 10,-0.1 8,-0.1 -5,-0.0 -0.192 53.9 169.2 -51.5 135.8 1.2 -4.6 2.1 11 11 A T S > S+ 0 0 89 -3,-0.1 4,-0.8 3,-0.1 3,-0.2 0.699 73.1 20.3-114.6 -73.8 3.6 -7.5 1.5 12 12 A V H >> S+ 0 0 95 1,-0.2 3,-1.2 2,-0.2 4,-0.6 0.951 129.8 48.5 -64.5 -48.5 6.6 -6.7 -0.6 13 13 A T H 34>S+ 0 0 4 1,-0.3 5,-3.1 2,-0.2 4,-0.4 0.672 97.1 73.6 -66.6 -14.8 6.3 -3.0 0.2 14 14 A A H >45S+ 0 0 46 1,-0.2 3,-1.0 3,-0.2 -1,-0.3 0.889 94.1 51.7 -66.0 -36.2 5.9 -4.0 3.8 15 15 A L H <<5S+ 0 0 154 -3,-1.2 -1,-0.2 -4,-0.8 -2,-0.2 0.773 107.0 54.4 -68.6 -25.3 9.6 -4.7 3.8 16 16 A L T 3<5S- 0 0 117 -4,-0.6 -1,-0.3 -3,-0.1 -2,-0.2 0.537 124.4-107.5 -83.7 -8.9 10.1 -1.2 2.4 17 17 A G T < 5 + 0 0 44 -3,-1.0 2,-0.3 -4,-0.4 -3,-0.2 0.715 60.4 165.5 87.5 24.3 8.1 0.2 5.3 18 18 A a < - 0 0 12 -5,-3.1 2,-0.3 -6,-0.1 -1,-0.2 -0.585 22.0-152.8 -77.3 129.9 5.0 0.9 3.2 19 19 A S E -A 26 0A 82 7,-2.5 7,-2.6 -2,-0.3 2,-0.4 -0.811 21.7-108.3-105.3 144.6 1.9 1.6 5.3 20 20 A b E +A 25 0A 69 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.564 49.3 158.5 -72.6 123.0 -1.7 1.0 4.1 21 21 A S E > -A 24 0A 74 3,-2.4 3,-1.6 -2,-0.4 -16,-0.1 -0.956 66.0 -4.2-150.6 126.3 -3.5 4.3 3.4 22 22 A N T 3 S- 0 0 114 -2,-0.3 -16,-0.1 1,-0.3 3,-0.1 0.854 129.0 -59.7 58.2 36.3 -6.5 5.0 1.2 23 23 A R T 3 S+ 0 0 137 1,-0.2 -17,-1.6 -18,-0.1 -18,-0.4 0.610 124.5 93.2 67.7 16.5 -6.4 1.3 0.2 24 24 A V E < S-A 21 0A 38 -3,-1.6 -3,-2.4 -20,-0.3 2,-0.4 -0.997 79.1-115.0-140.1 141.1 -2.9 1.8 -1.2 25 25 A c E +A 20 0A 0 -22,-2.6 -22,-0.3 -2,-0.4 2,-0.3 -0.623 40.5 173.3 -78.5 127.0 0.6 1.3 0.4 26 26 A Y E +A 19 0A 114 -7,-2.6 -7,-2.5 -2,-0.4 -2,-0.0 -0.966 22.3 167.9-134.9 150.5 2.6 4.5 0.7 27 27 A N S S- 0 0 84 2,-2.1 2,-1.6 -2,-0.3 -9,-0.1 -0.437 83.8 -56.4-160.0 68.4 5.9 5.5 2.3 28 28 A G S S+ 0 0 86 -27,-0.0 -10,-0.0 0, 0.0 -2,-0.0 -0.232 136.5 46.0 82.9 -46.4 6.9 8.9 1.1 29 29 A I 0 0 122 -2,-1.6 -2,-2.1 0, 0.0 0, 0.0 -0.839 360.0 360.0-122.0 157.0 6.6 7.6 -2.4 30 30 A P 0 0 88 0, 0.0 -4,-0.2 0, 0.0 -28,-0.2 -0.491 360.0 360.0 -68.4 360.0 3.9 5.4 -3.9