==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 27-NOV-91 1NCP . COMPND 2 MOLECULE: HIV-1 P7 NUCLEOCAPSID PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS 1; . AUTHOR G.M.CLORE,J.G.OMICHINSKI,A.M.GRONENBORN . 35 2 3 0 3 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2219.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 55157.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 22 62.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 N V 0 0 82 0, 0.0 20,-0.8 0, 0.0 2,-0.7 0.000 360.0 360.0 360.0 -21.1 3.9 -4.1 4.5 2 2 N K E -a 21 0A 109 18,-2.0 19,-2.4 17,-0.2 20,-0.7 -0.869 360.0-174.4-106.6 106.4 4.9 -3.3 0.9 3 3 N a E -ab 22 21A 6 18,-2.0 19,-9.9 17,-1.3 18,-0.8 -0.729 19.2-163.9 -99.5 149.3 2.5 -0.9 -0.8 4 4 N F E S+ b 0 22A 89 17,-1.8 19,-8.8 18,-1.7 18,-0.4 0.541 84.5 50.9-105.6 -11.0 2.7 0.2 -4.5 5 5 N N E S- b 0 23A 57 18,-0.9 19,-4.3 17,-0.6 18,-0.2 0.930 132.7 -2.2 -90.4 -69.3 0.4 3.2 -4.3 6 6 N b E S- b 0 24A 33 17,-2.9 19,-4.0 18,-0.7 18,-0.8 0.880 87.8-129.7 -91.5 -44.3 1.7 5.4 -1.4 7 7 N G E + b 0 25A 25 17,-3.8 19,-3.6 18,-0.9 18,-0.7 0.758 45.7 158.6 100.5 30.6 4.5 3.3 -0.1 8 8 N K E -cb 27 26A 46 17,-4.4 19,-8.2 18,-2.0 20,-1.6 -0.611 44.5-127.0 -86.8 148.1 3.7 3.1 3.6 9 9 N E E S+ b 0 27A 126 17,-2.0 19,-3.2 18,-1.9 18,-1.0 -0.599 93.4 56.4 -93.8 77.2 5.1 0.3 5.8 10 10 N G E S+ b 0 28A 56 17,-1.4 19,-2.0 -2,-1.4 18,-0.5 0.270 100.5 33.4-166.1 -42.8 1.9 -0.9 7.4 11 11 N H E S- b 0 29A 22 17,-6.9 19,-3.1 18,-1.4 18,-1.0 -0.564 71.0-116.6-119.2-175.7 -0.7 -2.0 4.8 12 12 N T E - b 0 30A 14 17,-5.3 19,-5.3 18,-0.2 2,-1.1 -0.703 41.7 -87.4-118.8 172.8 -0.8 -3.5 1.3 13 13 N A E S+ b 0 31A 12 17,-3.8 19,-3.2 18,-1.2 18,-0.6 0.136 110.8 83.1 -68.5 29.3 -1.9 -2.3 -2.1 14 14 N R E S+ b 0 32A 110 17,-4.2 19,-3.9 -2,-1.1 18,-0.5 0.883 99.6 21.8 -98.0 -54.3 -5.4 -3.6 -1.2 15 15 N N E S+db 34 33A 59 17,-4.0 19,-8.4 18,-1.1 20,-2.3 -0.213 103.5 103.2-108.6 43.7 -7.0 -0.9 0.9 16 16 N c E b 0 34A 8 17,-2.0 18,-1.0 18,-1.6 19,-0.7 -0.555 360.0 360.0-113.4-178.6 -4.9 2.1 -0.4 17 17 N R 0 0 148 16,-0.2 18,-0.2 -2,-0.2 -4,-0.0 -0.044 360.0 360.0-145.4 360.0 -5.6 4.9 -2.8 18 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 22 C K 0 0 176 0, 0.0 -17,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 150.1 7.8 -4.9 1.3 20 23 C G - 0 0 3 -19,-0.2 -18,-2.0 7,-0.1 -17,-1.3 -0.653 360.0 -10.3-175.2-124.7 4.8 -2.6 1.8 21 24 C a E -ab 2 3A 5 -19,-2.4 -18,-2.0 -18,-0.8 -17,-1.8 -0.870 37.9-162.2-105.4 132.4 2.5 -0.6 -0.5 22 25 C W E S+ab 3 4A 142 -19,-9.9 -18,-1.7 -20,-0.7 -17,-0.6 0.424 88.7 53.0 -89.6 2.7 3.4 -0.1 -4.1 23 26 C K E S+ b 0 5A 83 -19,-8.8 -17,-2.9 7,-0.3 -18,-0.9 0.863 130.2 1.3 -99.7 -70.5 1.0 2.8 -4.3 24 27 C b E S- b 0 6A 32 -19,-4.3 -17,-3.8 -18,-0.8 -18,-0.7 0.750 90.2-129.6 -92.7 -26.1 1.7 5.4 -1.5 25 28 C G E + b 0 7A 21 -19,-4.0 -17,-4.4 -18,-0.7 -18,-0.9 -0.005 53.3 147.3 104.4 -31.1 4.7 3.5 -0.0 26 29 C K E - b 0 8A 109 -19,-3.6 -17,-2.0 -18,-0.7 -18,-2.0 -0.122 49.8-131.6 -41.9 122.4 3.6 3.5 3.7 27 30 C E E S+cb 8 9A 66 -19,-8.2 -18,-1.9 -18,-1.0 -17,-1.4 -0.676 85.8 60.6 -84.6 97.6 5.0 0.2 5.1 28 31 C G E S+ b 0 10A 8 -19,-3.2 -17,-6.9 -20,-1.6 2,-0.2 -0.090 93.9 45.7-175.9 -66.1 2.0 -1.2 6.9 29 32 C H E S- b 0 11A 18 -19,-2.0 -17,-5.3 -18,-1.0 -18,-1.4 -0.617 76.1-130.1 -94.3 158.8 -1.0 -1.9 4.6 30 33 C Q E - b 0 12A 92 -19,-3.1 -17,-3.8 -18,-0.9 -7,-0.3 0.584 42.8 -80.8 -79.0-127.6 -0.6 -3.6 1.2 31 34 C M E S+ b 0 13A 103 -19,-5.3 -17,-4.2 -18,-0.6 -18,-1.2 0.052 113.8 74.4-130.1 22.3 -2.1 -2.2 -2.0 32 35 C K E S+ b 0 14A 89 -19,-3.2 -17,-4.0 -20,-0.5 -18,-0.6 0.809 102.3 33.3-101.5 -43.7 -5.6 -3.5 -1.5 33 36 C D E S+ b 0 15A 64 -19,-3.9 -17,-2.0 -18,-1.0 -18,-1.1 -0.300 78.6 123.8-109.0 48.5 -6.9 -1.1 1.2 34 37 C c E +db 15 16A 0 -19,-8.4 -18,-1.6 -18,-1.0 -1,-0.1 -0.334 22.3 126.0-102.8 51.9 -5.0 2.0 0.2 35 38 C T 0 0 47 -20,-2.3 -19,-0.2 -19,-0.7 -1,-0.2 0.336 360.0 360.0 -88.9 8.9 -8.0 4.3 -0.2 36 39 C E 0 0 159 -21,-0.4 -1,-0.2 -3,-0.2 -20,-0.1 0.885 360.0 360.0 -94.0 360.0 -6.4 6.8 2.2