==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 10-DEC-02 1NE5 . COMPND 2 MOLECULE: ERGTOXIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.M.TORRES,B.PARAMJIT,P.ALEWOOD,P.W.KUCHEL,J.I.VANDENBERG . 42 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3674.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 61.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 9.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 9.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 215 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 45.6 -10.8 14.1 -4.1 2 2 A R + 0 0 237 2,-0.0 0, 0.0 1,-0.0 0, 0.0 -0.199 360.0 129.3-148.4 47.6 -7.0 13.6 -4.5 3 3 A D + 0 0 116 24,-0.0 4,-0.2 3,-0.0 24,-0.0 0.999 27.0 170.8 -66.6 -74.5 -6.0 11.0 -1.9 4 4 A S > - 0 0 76 1,-0.1 3,-0.8 2,-0.1 5,-0.1 0.944 27.6-150.7 57.9 95.5 -4.0 8.5 -3.9 5 5 A a G >> S+ 0 0 20 1,-0.2 4,-2.9 3,-0.2 3,-2.0 0.767 89.9 75.6 -65.3 -25.4 -2.4 6.1 -1.5 6 6 A V G 34 S+ 0 0 56 1,-0.3 33,-0.6 2,-0.2 -1,-0.2 0.888 107.5 30.5 -53.2 -42.8 0.4 5.6 -4.0 7 7 A D G <4 S+ 0 0 148 -3,-0.8 -1,-0.3 -4,-0.2 -2,-0.2 0.015 129.1 43.0-105.7 25.7 1.8 9.0 -3.1 8 8 A K T <4 S+ 0 0 149 -3,-2.0 2,-0.5 1,-0.3 -2,-0.2 0.572 104.0 54.2-131.5 -53.6 0.7 8.8 0.5 9 9 A S S < S- 0 0 26 -4,-2.9 -1,-0.3 30,-0.1 30,-0.3 -0.812 75.4-142.1 -95.5 123.9 1.3 5.3 2.0 10 10 A R - 0 0 189 -2,-0.5 2,-0.3 -3,-0.1 -1,-0.1 0.219 20.4-170.6 -64.9-165.3 4.9 4.0 1.7 11 11 A b - 0 0 10 26,-0.1 28,-0.1 8,-0.1 2,-0.1 -0.974 22.0 -88.7-176.7 173.1 5.8 0.4 1.0 12 12 A A - 0 0 51 -2,-0.3 25,-2.3 26,-0.1 26,-0.3 -0.234 58.2 -78.7 -89.4-178.5 8.6 -2.1 0.9 13 13 A K S S- 0 0 121 23,-0.2 23,-2.0 1,-0.2 2,-0.3 0.899 98.3 -51.5 -46.9 -48.7 10.9 -3.0 -2.0 14 14 A Y E S+A 35 0A 154 21,-0.2 2,-0.4 22,-0.2 21,-0.2 -0.928 94.1 63.7 176.8 161.4 8.2 -5.1 -3.6 15 15 A G E S-A 34 0A 39 19,-1.9 19,-2.6 -2,-0.3 2,-0.6 -0.943 92.0 -10.6 118.6-135.2 5.6 -7.9 -3.1 16 16 A Y - 0 0 162 -2,-0.4 2,-0.6 17,-0.2 17,-0.1 -0.932 54.7-178.2-113.2 116.9 2.6 -7.8 -0.7 17 17 A Y >> - 0 0 71 -2,-0.6 4,-1.9 1,-0.1 3,-1.2 -0.921 19.9-154.5-117.6 106.6 2.4 -5.0 1.8 18 18 A Q H 3> S+ 0 0 138 -2,-0.6 4,-1.6 1,-0.3 -1,-0.1 0.775 97.1 61.2 -46.7 -29.5 -0.7 -5.2 4.2 19 19 A E H 3> S+ 0 0 105 2,-0.2 4,-1.8 3,-0.2 -1,-0.3 0.924 107.8 41.3 -65.6 -45.4 -0.4 -1.5 4.5 20 20 A c H <> S+ 0 0 0 -3,-1.2 4,-2.1 2,-0.2 3,-0.2 0.972 115.0 48.3 -66.7 -56.5 -0.9 -0.9 0.8 21 21 A Q H X S+ 0 0 35 -4,-1.9 4,-1.9 1,-0.2 -1,-0.2 0.819 111.4 54.2 -54.4 -31.5 -3.7 -3.5 0.3 22 22 A D H X S+ 0 0 62 -4,-1.6 4,-2.0 -5,-0.4 -1,-0.2 0.916 107.0 49.5 -69.7 -44.1 -5.3 -1.9 3.4 23 23 A a H X S+ 0 0 35 -4,-1.8 4,-1.5 -3,-0.2 -2,-0.2 0.977 113.7 43.8 -58.2 -60.1 -5.3 1.6 1.9 24 24 A d H >X>S+ 0 0 2 -4,-2.1 4,-1.8 1,-0.2 3,-1.3 0.947 113.5 50.5 -50.2 -57.9 -6.9 0.6 -1.4 25 25 A K H 3<5S+ 0 0 94 -4,-1.9 4,-0.3 1,-0.3 -1,-0.2 0.856 110.9 50.6 -50.2 -39.3 -9.5 -1.6 0.2 26 26 A N H 3<5S+ 0 0 121 -4,-2.0 -1,-0.3 1,-0.2 -2,-0.2 0.748 105.8 56.9 -72.1 -24.2 -10.4 1.2 2.5 27 27 A A H <<5S- 0 0 77 -4,-1.5 -2,-0.2 -3,-1.3 -1,-0.2 0.835 136.1 -76.4 -75.4 -33.9 -10.7 3.6 -0.4 28 28 A G T <5S+ 0 0 55 -4,-1.8 -3,-0.2 -5,-0.2 2,-0.2 0.519 101.2 78.1 140.0 35.8 -13.3 1.4 -2.1 29 29 A H S