==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA-BINDING PROTEIN 24-AUG-95 1NEQ . COMPND 2 MOLECULE: DNA-BINDING PROTEIN NER; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE MU; . AUTHOR G.M.CLORE,T.E.STRZELECKA,A.M.GRONENBORN . 74 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6019.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 67.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 39.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A C 0 0 173 0, 0.0 2,-0.6 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 -58.9 15.8 15.4 6.7 2 2 A S - 0 0 77 1,-0.1 3,-0.3 3,-0.0 0, 0.0 -0.829 360.0-167.3 -97.4 121.2 12.5 13.6 6.0 3 3 A N + 0 0 117 -2,-0.6 -1,-0.1 1,-0.2 0, 0.0 0.738 33.3 151.0 -77.6 -18.3 12.8 10.3 4.2 4 4 A E S S+ 0 0 142 1,-0.3 2,-0.9 -3,-0.1 -1,-0.2 0.141 81.8 26.1 28.3 -82.8 9.0 10.4 3.6 5 5 A K S S+ 0 0 98 -3,-0.3 -1,-0.3 1,-0.2 5,-0.2 -0.434 88.4 168.1 -96.0 53.2 9.2 8.4 0.4 6 6 A A S S- 0 0 43 -2,-0.9 -1,-0.2 1,-0.2 4,-0.1 0.882 73.2 -45.0 -35.2 -85.3 12.5 6.8 1.6 7 7 A R S S+ 0 0 169 -3,-0.2 -1,-0.2 2,-0.1 3,-0.1 0.529 118.9 88.3-125.8 -25.3 12.8 4.0 -1.0 8 8 A D S S- 0 0 24 1,-0.2 2,-0.3 58,-0.1 58,-0.2 -0.018 96.7 -64.7 -69.3 180.0 9.3 2.7 -1.2 9 9 A W - 0 0 96 56,-1.7 5,-0.2 1,-0.1 -1,-0.2 -0.509 60.4-106.7 -70.7 126.7 6.5 4.0 -3.4 10 10 A H > - 0 0 72 -2,-0.3 4,-2.3 1,-0.2 5,-0.2 -0.027 31.3-107.6 -44.8 155.7 5.5 7.6 -2.6 11 11 A R H > S+ 0 0 180 1,-0.3 4,-1.4 2,-0.2 5,-0.2 0.805 130.2 45.6 -59.2 -20.8 2.2 7.9 -0.8 12 12 A A H >>S+ 0 0 58 2,-0.2 4,-2.5 3,-0.2 5,-0.8 0.785 105.0 56.8 -90.8 -32.0 1.3 9.3 -4.3 13 13 A D H 45S+ 0 0 68 3,-0.2 4,-0.4 2,-0.2 5,-0.3 0.819 110.5 49.1 -69.9 -23.6 3.1 6.5 -6.3 14 14 A V H X5S+ 0 0 2 -4,-2.3 4,-2.7 3,-0.2 5,-0.3 0.979 125.1 24.6 -76.2 -63.1 0.9 4.1 -4.3 15 15 A I H X5S+ 0 0 56 -4,-1.4 4,-3.3 -5,-0.2 5,-0.4 0.948 127.0 47.9 -69.9 -48.0 -2.5 5.9 -4.9 16 16 A A H X5S+ 0 0 55 -4,-2.5 4,-0.7 -5,-0.2 -3,-0.2 0.957 118.0 42.7 -60.0 -45.0 -1.5 7.7 -8.2 17 17 A G H 4X S+ 0 0 9 -4,-2.7 3,-2.5 -5,-0.3 4,-0.5 0.986 116.7 51.9 -66.0 -56.9 -2.9 2.3 -8.4 19 19 A K H 3< S+ 0 0 127 -4,-3.3 -1,-0.2 -5,-0.3 -3,-0.2 0.691 87.0 88.4 -54.3 -14.8 -5.7 5.0 -9.0 20 20 A K T 3< S+ 0 0 182 -4,-0.7 -1,-0.3 -5,-0.4 -2,-0.2 0.827 104.6 22.7 -57.0 -25.5 -4.2 5.2 -12.5 21 21 A R T <4 S- 0 0 183 -3,-2.5 -2,-0.2 -4,-0.3 -3,-0.1 0.738 136.3 -57.0-103.1 -84.4 -6.6 2.4 -13.3 22 22 A K S < S+ 0 0 194 -4,-0.5 2,-0.4 0, 0.0 -3,-0.2 -0.264 89.9 114.9-161.2 63.2 -9.6 2.4 -10.9 23 23 A L + 0 0 32 -5,-0.2 2,-0.3 -8,-0.2 -2,-0.1 -0.997 27.4 173.1-140.8 141.6 -8.4 2.0 -7.2 24 24 A S >> - 0 0 38 -2,-0.4 3,-2.1 -6,-0.1 4,-1.8 -0.964 41.4-123.2-147.7 125.4 -8.5 4.2 -4.1 25 25 A L H 3> S+ 0 0 31 -2,-0.3 4,-0.8 1,-0.3 14,-0.1 0.776 116.6 57.3 -40.1 -24.7 -7.5 3.2 -0.6 26 26 A S H 3> S+ 0 0 71 2,-0.2 4,-1.6 3,-0.1 -1,-0.3 0.883 107.7 44.0 -77.5 -37.4 -11.1 4.3 0.2 27 27 A A H <> S+ 0 0 19 -3,-2.1 4,-2.0 1,-0.2 -2,-0.2 0.938 112.2 50.6 -73.7 -45.5 -12.7 1.8 -2.2 28 28 A L H X S+ 0 0 5 -4,-1.8 4,-0.9 1,-0.2 5,-0.2 0.825 108.2 57.5 -62.8 -26.7 -10.5 -1.2 -1.3 29 29 A S H >X S+ 0 0 2 -4,-0.8 4,-2.6 -5,-0.4 3,-0.8 0.985 112.7 34.5 -69.0 -58.0 -11.4 -0.5 2.3 30 30 A R H 3< S+ 0 0 198 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.763 107.3 70.6 -70.3 -21.0 -15.2 -0.8 2.1 31 31 A Q H 3< S+ 0 0 125 -4,-2.0 -1,-0.2 -5,-0.2 -2,-0.2 0.867 116.9 23.2 -64.4 -29.9 -14.8 -3.5 -0.6 32 32 A F H << S- 0 0 121 -4,-0.9 -2,-0.2 -3,-0.8 -1,-0.2 0.700 115.0-113.2-105.0 -27.1 -13.5 -5.8 2.2 33 33 A G S < S+ 0 0 53 -4,-2.6 -3,-0.1 1,-0.4 -4,-0.1 -0.228 71.5 129.7 123.9 -46.0 -15.2 -4.0 5.2 34 34 A Y S S- 0 0 113 -6,-0.2 -1,-0.4 -5,-0.1 -2,-0.2 -0.157 70.5-104.6 -45.2 123.3 -12.2 -2.6 7.1 35 35 A A >> - 0 0 47 1,-0.1 4,-1.2 -3,-0.1 3,-0.6 -0.041 32.2-102.9 -46.1 158.2 -13.0 1.1 7.7 36 36 A P H 3> S+ 0 0 78 0, 0.0 4,-2.0 0, 0.0 5,-0.2 0.789 121.1 64.9 -57.7 -27.6 -11.0 3.6 5.4 37 37 A T H 3> S+ 0 0 95 2,-0.2 4,-3.3 1,-0.2 5,-0.3 0.947 98.0 52.6 -63.4 -45.8 -8.8 4.3 8.4 38 38 A T H <> S+ 0 0 48 -3,-0.6 4,-1.1 1,-0.2 -1,-0.2 0.977 109.8 46.2 -54.3 -60.5 -7.4 0.8 8.6 39 39 A L H >< S+ 0 0 2 -4,-1.2 3,-0.6 1,-0.2 -1,-0.2 0.935 117.1 45.7 -50.5 -48.0 -6.3 0.7 4.9 40 40 A A H >< S+ 0 0 41 -4,-2.0 3,-1.8 1,-0.2 4,-0.2 0.986 110.4 50.8 -60.9 -57.6 -4.7 4.1 5.3 41 41 A N H >X S+ 0 0 76 -4,-3.3 4,-2.3 1,-0.3 3,-1.0 0.674 90.6 84.3 -56.0 -12.4 -3.0 3.3 8.6 42 42 A A T << S+ 0 0 2 -4,-1.1 -1,-0.3 -3,-0.6 -2,-0.2 0.474 75.5 72.5 -71.9 3.8 -1.7 0.2 6.8 43 43 A L T <4 S+ 0 0 53 -3,-1.8 -1,-0.2 1,-0.1 -2,-0.2 0.817 121.1 4.5 -87.3 -31.8 1.1 2.5 5.5 44 44 A E T <4 S+ 0 0 160 -3,-1.0 -2,-0.2 -4,-0.2 2,-0.1 0.436 108.6 100.7-128.4 -9.4 3.0 2.8 8.8 45 45 A R S < S- 0 0 172 -4,-2.3 2,-1.6 -7,-0.1 -7,-0.0 -0.466 86.0-100.7 -80.7 155.5 1.1 0.5 11.1 46 46 A H S S+ 0 0 190 -2,-0.1 -1,-0.1 1,-0.1 -4,-0.1 -0.521 85.3 107.4 -72.9 88.8 2.3 -3.1 12.0 47 47 A W >> + 0 0 75 -2,-1.6 3,-2.1 -5,-0.2 4,-0.6 -0.300 35.5 175.6-166.9 73.0 -0.0 -5.0 9.6 48 48 A P H 3> S+ 0 0 79 0, 0.0 4,-1.1 0, 0.0 3,-0.2 0.699 80.2 70.7 -56.5 -19.0 1.7 -6.6 6.5 49 49 A K H 3> S+ 0 0 130 1,-0.2 4,-1.3 2,-0.2 -7,-0.0 0.792 89.3 61.1 -72.4 -22.6 -1.7 -8.2 5.7 50 50 A G H <> S+ 0 0 0 -3,-2.1 4,-1.3 1,-0.2 -1,-0.2 0.870 100.6 53.0 -71.7 -33.1 -3.1 -4.7 4.8 51 51 A E H X S+ 0 0 23 -4,-0.6 4,-3.2 -3,-0.2 5,-0.4 0.859 100.4 62.6 -70.9 -29.7 -0.5 -4.4 2.0 52 52 A Q H X S+ 0 0 100 -4,-1.1 4,-3.1 1,-0.2 5,-0.2 0.955 98.8 55.2 -59.4 -45.1 -1.6 -7.7 0.6 53 53 A I H X S+ 0 0 22 -4,-1.3 4,-1.1 2,-0.2 -1,-0.2 0.945 114.0 40.6 -52.7 -48.5 -5.1 -6.2 -0.0 54 54 A I H >X S+ 0 0 2 -4,-1.3 3,-1.0 2,-0.2 4,-1.0 0.977 116.8 45.8 -66.8 -55.5 -3.5 -3.4 -2.1 55 55 A A H ><>S+ 0 0 0 -4,-3.2 5,-1.8 1,-0.3 3,-0.6 0.877 104.7 64.9 -58.2 -33.2 -0.9 -5.6 -3.9 56 56 A N H ><5S+ 0 0 104 -4,-3.1 3,-1.7 -5,-0.4 -1,-0.3 0.901 95.0 58.7 -57.3 -37.8 -3.6 -8.1 -4.6 57 57 A A H <<5S+ 0 0 42 -4,-1.1 -1,-0.3 -3,-1.0 -2,-0.2 0.890 108.6 44.1 -60.8 -35.4 -5.4 -5.5 -6.8 58 58 A L T <<5S- 0 0 43 -4,-1.0 -1,-0.3 -3,-0.6 -2,-0.2 0.344 109.0-126.8 -89.6 8.4 -2.2 -5.3 -9.0 59 59 A E T < 5S+ 0 0 180 -3,-1.7 -3,-0.2 -4,-0.2 2,-0.1 0.767 78.2 110.9 53.5 20.2 -2.1 -9.1 -8.9 60 60 A T S > - 0 0 126 -2,-0.1 3,-2.1 -3,-0.1 4,-0.5 -0.826 25.0-123.5-107.2 148.9 3.4 -9.0 -4.4 62 62 A P H >> S+ 0 0 15 0, 0.0 4,-2.2 0, 0.0 3,-0.9 0.798 107.6 75.8 -59.9 -26.3 3.7 -6.3 -1.7 63 63 A E H 34 S+ 0 0 76 1,-0.2 7,-0.1 2,-0.2 6,-0.1 0.652 90.7 58.1 -60.6 -10.6 7.5 -6.8 -2.0 64 64 A V H <4 S+ 0 0 60 -3,-2.1 -1,-0.2 2,-0.1 0, 0.0 0.800 109.4 39.3 -90.5 -30.8 7.2 -4.8 -5.2 65 65 A I H << S+ 0 0 3 -3,-0.9 -56,-1.7 -4,-0.5 -2,-0.2 0.760 130.4 30.1 -89.9 -24.0 5.7 -1.6 -3.6 66 66 A W X + 0 0 16 -4,-2.2 4,-0.8 -58,-0.2 3,-0.5 -0.559 69.9 149.6-132.8 70.0 7.9 -1.8 -0.5 67 67 A P T 4 S+ 0 0 62 0, 0.0 3,-0.3 0, 0.0 -1,-0.1 0.848 70.0 57.8 -71.8 -38.7 11.2 -3.5 -1.6 68 68 A S T 4 S+ 0 0 51 1,-0.2 3,-0.1 3,-0.1 -5,-0.0 0.630 105.9 52.2 -72.3 -5.9 13.5 -1.7 1.0 69 69 A R T 4 S+ 0 0 176 -3,-0.5 2,-0.5 1,-0.2 -1,-0.2 0.723 108.9 54.2 -97.5 -23.7 11.4 -3.1 3.8 70 70 A Y < + 0 0 96 -4,-0.8 -1,-0.2 -3,-0.3 0, 0.0 -0.928 59.6 130.5-109.5 121.1 11.7 -6.7 2.4 71 71 A Q + 0 0 168 -2,-0.5 -1,-0.1 -3,-0.1 3,-0.1 0.315 29.7 112.1-151.5 2.4 15.3 -7.7 1.9 72 72 A A S S- 0 0 112 1,-0.1 2,-0.6 2,-0.0 -2,-0.0 0.374 94.5-100.6 -66.8 14.4 15.7 -11.2 3.6 73 73 A G 0 0 67 0, 0.0 -1,-0.1 0, 0.0 -3,-0.0 -0.891 360.0 360.0 108.7-116.2 16.1 -12.5 -0.0 74 74 A E 0 0 215 -2,-0.6 -3,-0.1 -3,-0.1 -2,-0.0 -0.712 360.0 360.0 -89.2 360.0 13.1 -14.1 -1.7